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Abstract— Path planning for robotic coverage is the task
of determining a collision-free robot trajectory that observes
all points of interest in an environment. Robots employed for
such tasks are often capable of exercising active control over
onboard observational sensors during navigation. We address
the problem of planning robot and sensor trajectories that
maximize information gain in such tasks, where the robot needs
to cover points of interest with its sensor footprint. Search-
based planners in general guarantee completeness and provable
bounds on suboptimality with respect to an underlying graph
discretization. However, searching for kinodynamically feasible
paths in the joint space of robot and sensor state variables
with standard search is computationally expensive. We propose
two alternative search-based approaches to this problem. The
first solves for robot and sensor trajectories independently in
decoupled state spaces while maintaining a history of sensor
headings during the search. The second is a two-step approach
that first quickly computes a solution in decoupled state spaces
and then refines it by searching its local neighborhood in the
joint space for a better solution. We evaluate our approaches
in simulation with a kinodynamically constrained unmanned
aerial vehicle performing coverage over a 2D environment and
show their benefits.

I. INTRODUCTION

Path planning for traditional robotic coverage is the task
of determining a collision-free robot trajectory that observes
all points of interest in a given environment [1]. Numerous
real-world tasks including environmental exploration, traffic
monitoring, and post-disaster assessment can be cast as
robotic coverage problems [2], [3], [4], [5]. Robots employed
for such coverage tasks are often equipped with limited-range
sensors to observe the environment and can exercise active
control over them. An important problem is to plan robot
and sensor trajectories that maximize coverage or informa-
tion gain in these tasks, while also respecting kinodynamic
constraints and arriving at a goal location. This is akin to an
informative path planning problem. Real-time kinodynamic
planning is a computationally expensive problem in itself
due to the many degrees of freedom in a kinodynamic robot
state. Additionally planning trajectories for sensors onboard
these robots further increases the computational complexity
of this task.

In this paper, we consider the specific problem of planning
trajectories for an unmanned aerial vehicle (UAV) and its on-
board sensor covering cells of a discrete map—representing
a known, deterministic environment—to achieve efficient 2D
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Fig. 1: We present two algorithms for search-based planning for active
sensing. (A) SPLASH tries to minimize sensor footprint overlaps along
the robot trajectory. For the last state in the figure, it would prefer the
solid blue sensor footprint over the dashed blue so as to avoid the overlap
denoted by the red area. (B) SPLIT iteratively refines an initial trajectory
πi to maximize the area covered by the sensor to come up with the final
trajectory πf .

area coverage while navigating to an assigned goal. We
assume that the UAV flies at a fixed altitude, and that the
yaw angle of a pan-only camera onboard the UAV can
be controlled, thereby controlling the camera’s projected
footprint on the ground. In turn, we include the robot’s x and
y coordinates, heading θ, velocity v, timestamp t, and sensor
angle ψ in our state space—making it at least a 6-degree-of-
freedom (6-DoF) planning problem (we describe in Sec. III
how this can amount to planning in more than 6 DoFs). We
tackle this problem using a search-based approach, which
comes with the advantage of guarantees on solution quality
up to the discretization of the graph representing the problem.

However, naïvely applying search-based approaches to
such a problem results in high computational cost. A key
challenge in planning non-myopic sensor trajectories that
maximize coverage is that in general, for a given robot
trajectory, the optimal sensor configuration at a given point in
the trajectory depends on all previous sensor measurements
(the full sensor history). One can appreciate this in 2D
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environments by thinking of sensor footprint overlaps: to
compute an optimal sensor configuration at a given location,
a planner must take into account all overlaps with previously
planned sensor footprints in the plan being considered.
However, including the full sensor history in a state makes
the search computationally intractable. Our first approach,
Sensor Planning with Sensor History (SPLASH), first com-
putes a robot trajectory. It then searches for sensor plans for
this fixed robot trajectory while maintaining a partial sen-
sor history during the search—this prevents covering areas
already sensed before in the trajectory, up to the maintained
sensor history horizon. Even for a fixed robot trajectory,
the space of sensor trajectories exponentially increases in
dimensionality as we account for longer sensor histories
(this might not be trivial to see, and so we detail how this
occurs in Sec. IV). Our results show that in most planning
problems considering 2D sensor footprint overlaps, only a
partial history of sensor footprints actually affect computing
the next optimal sensor configuration.

The basis of our second approach is the empirical obser-
vation that approximate search algorithms like Weighted A*
(WA*) overlook better solutions that are actually “close”
to the computed solution in the space of solution paths [6],
[7]. In our second approach, Sensor Planning with Local
Iterative Tunneling (SPLIT), we split the process into two
steps: (1) We first quickly compute suboptimal robot and
sensor trajectories in decoupled robot and sensor state spaces
using SPLASH (initialization). (2) We then use this solution
as initialization to a local-search routine that iteratively
improves this solution in the joint robot and sensor state
space until time runs out (refinement). We adapt Iterative
Tunneling Search with A* (ITSA*) [7] to our problem for
this refinement step. This is detailed in Sec. V.

The illustation in Fig. 1 depicts both of our approaches on
a toy example. Our approaches can be contextualized within
several related works on sensor management and informative
path planning, as we do in Sec. II. In Sec. III, we describe
our problem and notation in detail. In sections IV and V, we
describe and provide pseudocode for both of our approaches.
In Sec. VI, we evaluate our approaches and show their
benefits in the context of a previously established planning
framework for persistent coverage with multiple UAVs [8],
where individual UAVs are tasked with generating collision-
free trajectories that maximize coverage while navigating to
continuously assigned goals. Note that our contribution lies
in planning robot and sensor trajectories for a single UAV
navigating to a goal (we do not attempt to solve the problem
of coordinating UAV plans for coverage). To the best of our
knowledge, no previous work applies search-based planning
to this problem.

II. RELATED WORK

Hero and Cochran present an extensive survey on sensor
management [9]. Gutpta et al. state general challenges and
computational complexity of optimal sensor selection in
detail in [10]—this is on similar lines as the computa-
tional challenge of maintaining a sensor history (see Fig 4,

explained later). In general, optimal coverage has been
addressed in various settings including mobile sensors and
autonomous robots. Robotic sensing systems have used with
both fixed sensors [11], [12] as well as sensors that execute
pre-computed patterns [13]. The problem of optimal mobile
sensor location with unbounded ranges has been tackled
as Voronoi space partitioning in [14]. Many approaches
have also been targeted to specific applications, such as
active perception work [15], [16]. The measurement control
problem, also essentially a sensor scheduling problem, was
shown to be solved by tree-search in general [17]. To deal
with computational intractability, several greedy solutions
have been proposed [10], [18], [19], [20], [21]. Further,
Finite-horizon model predictive control provide improvement
over myopic techniques but suffer from high run-times in
large state spaces and provide no performance guarantees
beyond the horizon depth [22], [23]. Arora et al. propose a
data-driven approaches to sensor trajectory generation that
map calculated features to sensory actions [24].

Several recent works that fall under informative path plan-
ning are closely related to our work. Perhaps the most closely
related is a recent line of work on active information acqui-
sition, although with fixed sensors onboard robots: Atanasov
et al. propose a non-greedy, value-iteration based offline
solution with applications to gas distribution mapping and
target localization [25]. Schlotfeldt et al. then reformulate
the problem as a deterministic planning problem and apply
A* search with the first consistent heuristic for informa-
tion acquisition, with applications to active mapping [26].
Kantaros et al. then propose a probabilistically complete
and asymptotically optimal sampling-based approach to this
problem, along with strategies to bias exploration toward
informative regions [27]. Lu et al. propose a potential-
function based method for integrated planning and control
of robotic sensors deployed to classify multiple targets in an
obstacle-populated environment [28].

There are also lines of work that formulate information
gathering as an Orienteering Problem. Of particular interest
are [29], [30], [31], [32] because of a similarity in their
approaches with our initialize-and-refine approach in SPLIT
(detailed further in Sec. V). However these approaches focus
on computing informative tours—unlike our goal-directed
setting, and perform local refinement over heading angles
constrained by Dubin’s-car dynamics—unlike our approach
that refines sensor angles that observe the environment.

III. PROBLEM FORMULATION AND NOTATION

A. Persistent coverage framework

We contextualize and evaluate our approaches within
the persistent-coverage framework established in previous
work [8]. This is a centralized framework that continuously
computes goal locations to which UAVs should fly and
kinodynamically feasible, globally deconflicting plans for
them to do so, in a prioritized planning setting [33]. While
it is a multi-UAV system, we plan for UAVs indepen-
dently—plans between UAVs are not explictly coordinated
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Fig. 2: An example of the successor-generation functions for the three search
spaces described in Sec. III.

in [8] and is out of the scope of this paper. Our specific
contribution lies in planning robot and sensor trajectories
for a single UAV navigating to a goal. The framework in [8]
assumes a circular sensor footprint directly underneath the
UAV. In this paper, we extend the system to incorporate
a rectangular footprint offset from the UAV—consequently,
different sensor headings correspond to the UAV observing
different areas of the environment around it.
Map. The environment map M consists of a priority map
MC and a no-coverage map MNC. The UAV must attempt
to cover each cell ci,j at row i and column j ofMC. Such a
cell is associated with two values: its lifetime l(i, j) and age
a(i, j)—the age of a cell is the time passed since the cell was
last covered by a UAV, and its lifetime is a desired bound
on its age. At any point of time t, MC holds the quantity
p(i, j) = l(i, j)− a(i, j) for each cell ci,j . MC decays with
time, meaning p(i, j) for each cell ci,j reduces by one every
second, thus making ci,j more urgent. Cells part of MNC

do not need to be covered.
Sensor. In our setting, the sensor is a pan-only camera with
one controllable DoF (yaw), which controls a downward-
looking rectangular footprint of fixed and limited field-of-
view. The area of the footprint is discretized into cells on
the map according to an underlying resolution. We assume
no noise in the footprint observed by the sensor.
Robot. The UAV is a kinodynamically constrained system,
accounting for the robot’s x and y coordinates, heading angle
θ, velocity v, and timestamp t. The UAV is said to be at a cell
ci,j if the projection of its reference point onto the xy-plane
lies in cell ci,j . A cell is said to be covered by the UAV if any
point on the cell is contained in the rectangular projection
of the sensor footprint on the xy-plane.

B. Problem formulation and definitions

We represent this planning problem as a search over a
finite, discrete search space. Here, we define the configura-
tion spaces of the robot (UAV) and sensor, and three state
spaces that are relevant to our approaches. Each state space is
associated with a set of transitions, and they together define
three separate search spaces.

1) Robot state space: A feasible robot configuration is
represented by cR = (x, y, θ, v, t) where x and y are the
robot’s 2D coordinates, θ is the UAV’s heading, and t is
the global timestamp at which this configuration is achieved
(the timestamp t is part of cR as we plan spatiotemporally
collision-free trajectories for multiple robots in this frame-
work). These five degrees of freedom together define the
5D robot state space ER. A set of kinodynamically feasible
motion primitives computed offline define a state lattice [34]
via a set of transitions

TR = {(cRi , cRj ) | cRi , cRj ∈ ER}
This defines a search space represented by a graph GR with
nodes ER and edges TR. A robot trajectory πR is a sequence
of feasible robot configurations.

2) Sensor state space: A sensor configuration is defined
with respect to a corresponding robot configuration cR as a
tuple cS = (t, ψ,Hψ), where t is the timestamp in cR, ψ is
the sensor’s heading angle in the global frame, and Hψ is
a list denoting the history of sensor angles assigned at all
timestamps earlier than t. These state variables collectively
define the sensor state space ES, with dimensionality (1 +
|Hψ|)‡. The set of feasible sensor motions define a set of
transitions

TS = {(cSi , cSj ) | cSi , cSj ∈ ES}

This defines a search space represented by a graph GS with
nodes ES and edges TS. A sensor trajectory πS is a sequence
of sensor configurations.

3) Joint state space: A feasible joint-state configuration
cJ is a concatenation of a feasible robot configuration and
sensor configuration 〈cR, cS〉. These state variables collec-
tively define the joint state space EJ of dimensionality (6 +
|Hψ|). The set of feasible transitions in EJ is a combination
of feasible transitions in ER and ES

TJ = {(cJi , cJj) | cJi , cJj ∈ EJ}
This defines a search space represented by a graph GJ with
nodes EJ and edges TJ. Note that since the state-lattice
discretization in ER can be different from that in ES, the
transition set TJ consists of actions that change robot and
sensor states at their respective state discretizations.

Given these search spaces, we define the routine SUC-
CESSORS(s,TR) to be the successor-generation routine for
a state s that returns successor states in ER. Similarly,
we have the routines SUCCESSORS(s,TS) and SUCCES-
SORS(s,TJ). Fig. 2 illustrates these three types of successors,
although with much smaller branching factors for TR and
TJ. Specifically, in TJ for example, we generate 3 sensor-
space successors for points at every 1s of a 4-second long
motion primitive. We have 12 motion primitives per robot
state on average, making the branching factor in the joint
space 12 × 4 × 3 = 144 on average. We also denote
running algorithm X searching for a path from sstart to sgoal
in search space G by X(sstart , sgoal | G). For example,

‡Note that t is a known variable and no search is performed over it,
and thus it does not contribute to the dimensionality of cS.
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A*(sstart , sgoal | GJ) denotes running A* search in the
search space determined by GJ (meaning state transitions
are determined by TJ).

C. Cost Function

We now define the cost function associated with a tran-
sition from state s to s′. We use two costs—one associated
with sensor coverage at s′ where s′ ∈ ES or EJ, and the
other associated with the UAV’s motion primitive from s to
s′ where s, s′ ∈ ER or EJ.

Motion primitive cost. Each motion primitive is a se-
quence of states forward-simulated from the corresponding
robot state at s, srobot = (x, y, θ, v, t), following double-
integrator dynamics. The cost of the primitive is equal to the
time taken for the UAV to execute it. More details about the
motion primitives can be found in [8].

Sensor coverage cost. For the corresponding sensor state
at s′, s′sensor = (t, ψ,Hψ), the variables x, y, θ, ψ together
define a 2D specific footprint of cells F . Let a given footprint
F cover |F| discrete cells in the map M. Let the number
of these cells lying in a coverage zone be given by NC and
those lying in a no-coverage zone be NNC :

NC =
∑
i∈F

1
[
i ∈MC

]
and NNC =

∑
i∈F

1
[
i ∈MNC

]
1) No sensor history: If we ignore the sensor history, the

cost of a footprint is given by the sum of priorities of all
coverage cells in F , and an additive penalty λ scaled by the
fraction of no-coverage cells in F :

cost0(F) =

criticality measure︷ ︸︸ ︷∑
i∈F∧C

pi +

penalize
no-coverage cells︷ ︸︸ ︷
λ× NNC

|F|
(1)

2) With sensor history: We define the following sensor
coverage cost for this footprint F (where ‘1’ represents the
indicator function):

costH(F) =

criticality measure︷ ︸︸ ︷∑
i∈F∧C

1[i /∈ Hψ ]× pi︸ ︷︷ ︸
not in history

+1[i ∈ Hψ ]× li︸ ︷︷ ︸
in history

+

penalize
no-coverage cells︷ ︸︸ ︷
λ×

NNC
|F|

(2)
This cost function is illustrated in Fig. 3. Note that Eq. 2

reduces to Eq. 1 when no history is considered.

IV. SENSOR PLANNING WITH SENSOR HISTORY
(SPLASH)

In this section, we describe out first approach, SPLASH.
SPLASH first quickly computes a suboptimal robot trajec-
tory using Multi-Heuristic A* (MHA*) search in GR. This
search is performed with the motion primitive cost function
(Sec. III-C). Then, it computes a sensor trajectory using
(uninformed-)A* search in GS for a given history H. This
search is performed with the sensor coverage cost function
costH(F) (Sec. III-C). Using A* here guarantees that the
sensor trajectory will be optimal for the computed robot
trajectory up to the discretization and history used.

Fig. 3: Pictorial explanation of our cost function costH(F) from Eq. 2. We
consider history size, H = 2 in this example. For the last UAV state on the
green trajectory πR, the sensor footprint is shaded in three colours. The blue
area is the overlap with previous footprints in πR, while the red and dark
green areas do not overlap. For Eq. 2, the blue area is in history, the red
area is not in history, and the dark green area is penalize no-coverage cells.
Note that for footprints too far in the past, even if there was an overlap, it
has no effect.

Fig. 4: Graph representation for sensor planning for history size H = 0
(above) and H = 1 (below). Each level l in the graph corresponds to a state
in the UAV trajectory πR. The search space size increases with increasing
history sizes. Thus, duplicates (highlighted by coloured arrows and nodes)
appear less frequently with increasing history sizes making the search for
an optimal πS more expensive.

MHA* is a variant of A* that can use multiple arbitrarily
inadmissible heuristics. We omit details for brevity and
refer the reader to the paper for details [35]. We use (1)
a Euclidean distance heuristic, (2) a Dubin’s path length
heuristic, and (3) a Dijkstra’s shortest path length heuristic.

Note that here and henceforth in this paper, when we
mention A*, we are talking about uninformed A* (without
a heuristic). We set aside formulating with a consistent
heuristic for sensor coverage in our setting for future work.
However, both SPLASH and SPLIT both work unchanged
with the addition of a heuristic. The pseudocode for SPLASH
can be found in Alg. 1.

The most important aspect of SPLASH is accounting for
sensor history in Line 3. Fig. 4 illustrates the effect of history
values H = 0 and H = 1 on the search graph GS for a given
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Algorithm 1 Sensor Planning with Sensor History
(SPLASH)

Input: sstart , sgoal , H
Output: πf (final trajectory in joint space)

1: procedure MAIN()
2: πrobot ← MHA*(sstart , sgoal | GR)

. using motion primitive cost as in Sec. III-C
3: πsensor ← A*(sstart , sgoal | GS) with H states in sensor history

. using sensor coverage cost, costH(F) as in Sec. III-C
4: πjoint ← concatenate πrobot and πsensor

. creates a joint-space plan as in Sec. III-B.3
5: return πjoint

initial sensor heading ψ0. Each level in Fig. 4 corresponds to
a waypoint along the robot trajectory πR. The figure denotes
state cS = (t, ψ,Hψ) as a tuple where Hψ is the last H
elements in the tuple. For any state cS, the sensor angle can
either be changed by one step (increment or decrement), or
it may remain the same.

The effect of H values is illustrated by the colored arrows
and vertices in the graph—two arrows of the same color end
up at a unique state in the graph. The key idea is as follows:
For H = 0, ending up at ψ0 on level 2 is considered the
same state, whether you come from ψ0 or ψ−1 or ψ1—we
only care about the current sensor angle. But for H = 1,
ending up at ψ0 on level 2 is considered a different state
in all these three cases because we maintain 1 historical
sensor angle. This can be incorporated by defining the state
as cS = (t, ψ,Hψ) where |Hψ| = 1. Observe that states are
replicated in this way a lot more frequently for H = 0 than
for H = 1, meaning the graph for H = 0 has much (in fact,
exponentially) lesser states than that for H = 1.

V. SENSOR PLANNING WITH LOCAL ITERATIVE
TUNNELING (SPLIT)

SPLASH takes into account sensor history and incen-
tivizes the search to compute plans where overlaps are
minimized. However, it operates with a fixed, suboptimal
robot trajectory that optimizes only motion primitive cost.
Recall that it is empirically observed that approximate search
algorithms tend to overlook better solutions that are actually
“close” to the computed solution in the space of solution
paths [7]. The final solution that SPLASH gives us—say
π—is most likely suboptimal with respect to the coverage
cost in the space of joint-space solutions. Sensor Planning
with Local Iterative Tunneling (SPLIT) locally refines π by
performing searches in small search spaces around π in the
joint space using the sensor coverage cost function costH(F)
(Sec. III-C), increasing in size with each iteration. We call
these search spaces tunnels, and this is an application of the
ITSA* algorithm [7].

We provide pseudocode for SPLIT in Alg. 2. Lines
in blue indicate the differences from standard A* search.
Line 2 obtains the initial solution from SPLASH. Then,
LOCALITERATIVETUNNELING refines this solution locally
by performing A* searches in iterative tunnels. The “level”
of a state s corresponds to the distance from the initial path
πi to s computed as the smallest number of edges on a path

Algorithm 2 Sensor Planning with Local Iterative Tunneling
(SPLIT)

Input: sstart , sgoal , Toverall (time limit)
Output: πf (final trajectory in joint space)

1: procedure MAIN()
2: πi ← SPLASH(sstart , sgoal ,H = 0) . Initialization step
3: tSPLASH ← time taken for SPLASH to terminate
4: πf ← LOCALITERATIVETUNNELING(π,Toverall − tSPLASH)

. Refinement step
5: return πf

6: procedure LOCALITERATIVETUNNELING(πi , t)
7: iteration ← 1
8: Create and store all states si ∈ πi in memory with level(si) = 0
9: while time t remains do . Iterative Tunneling loop

10: sstart ← first state in π
11: sgoal ← last state in π
12: g(sgoal ) =∞; g(sstart ) = 0
13: bp(sstart ) = bp(sgoal ) = NULL
14: Insert sstart into OPEN with KEY(sstart )
15: while OPEN not empty do . Modified A* loop
16: s← OPEN.MIN() . where OPEN is a min-heap
17: if s is goal then
18: Backtrack from s to obtain solution πf
19: break
20: for successor s′ in SUCCESSORS(s,TJ) do

. successors are computed via transitions in EJ

21: if s′ not closed then
22: if g(s′) > g(s) + c(s, s′) then
23: g(s′) = g(s) + c(s, s′)

. where c(s, s′) is the sensor coverage cost
24: bp(s′) = s
25: level(s′) = level(s) + 1

26: if level(s′) ≤ iteration then
27: Insert s′ into OPEN with KEY(s′)

28: iteration ← iteration + 1
29: t← t− time elapsed in current iteration
30: return πf

31: procedure KEY(s)
32: return g(s) + h(s) . where h(.) is a consistent heuristic

from any state on πi to s [7]. In the beginning, every state
on the initial plan πi is stored in memory with level 0.

The refinement process is essentially A* being performed
repeatedly, with the addition of lines 25–27. The level of any
newly generated state is set to one more than the level of its
parent. Only a state whose level is lesser than the current
iteration number is inserted into the OPEN list. This is what
creates tunnels increasing in size per iteration. LOCALITER-
ATIVETUNNELING—and consequently, SPLIT—terminates
when the time available for local refinement runs out.

VI. EXPERIMENTAL RESULTS

We evaluate our approaches by running them over 10
randomly generated start-goal pairs per map for 20 maps.
We pick maps as seen in the persistent coverage framework
described in [8] (Sec. III). The maps are generated by letting
the map in the framework decay for several minutes while
one UAV with a fixed sensor covers it persistently and pick
snapshots of the map at different points in time, giving us
maps with complex coverage zones.

Evaluation. Let a given trajectory in the joint space cover
N cells that lie in coverage zones. Let the quantity

∑
i pi

denote the sum of priorities of all such cells. We value
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Fig. 5: Results of running SPLASH for sensor histories of size 0, 3, 5.

two things: covering a large number of cells, and covering
important cells (those with a low priority value). Thus, a
large value of N and low values of

∑
i pi are desirable for a

given plan. The quantity P̄ =
∑

i pi
N denotes the average of

the priority values of all such cells. A low value of P̄ is not
necessarily an indicator of a desirable plan due to various
cell priorities encountered in a complex map. For any two
plans having the same value of P̄ , it depends on whether
the user prefers covering more cells or important cells. As
an illustration, consider plan A that covers only one cell with
priority {10}, and plan B that covers 6 cells with priorities
{5, 5, 5, 5, 20, 20}. The average priority of cells in both plans
is the same (= 10), and it is up to the user to decide which
plan is considered “better”.

Since SPLASH penalizes footprint overlaps, we see an
increase in the number of cells covered as a larger sensor his-
tory is maintained (see Fig. 5). We also see that maintaining a
sensor history of size 5 gives us no more value than size 3 in
practical settings. Also notice that P̄ stays fairly unchanged
over several trajectories. This can be attributed to sufficiently
complex maps have many different priority values for cells
and no single, contiguous coverage zone—maintaining sen-
sor history would indeed lead to covering more cells, but the
average priority over these cells would be approximately the
same.

Since SPLIT refines the trajectory locally to optimize
coverage cost, we see an increase in information gain, or a
decrease in

∑
i pi, with each iteration (see Fig. 6). We also

see decreasing path costs (g-value of the goal) with each
iteration. Note that its performance largely depends on the
immediate area around the initial plan which will be explored
in the iterative tunnels. If this immediate area has only a few
more important cells to cover, the refined plan will largely
stay the same.

A natural baseline is to search directly in the joint space of
robot and sensor variables. This requires a cost function that
is a linear combination of the motion primitive and sensor
coverage cost. Running MHA* on these start-goal pairs with
such a cost function yielded an average planning time of
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Fig. 6: Results of running SPLIT timed out at 30s.

8.44 ± 6.40s—significantly larger than running SPLASH
with a sensor history of size 3 or SPLIT for 2 or 3 iterations.
(We set a timeout of 20s while obtaining this value, so this
is a conservative estimate and true value is in fact larger.)

Note that iteration 4 onward, SPLIT takes a long time to
terminate. This is useful for real-world planning problems
only if the planner is given sufficient time. For example, in
the framework that we have built upon [8], it is possible
to tune the duration of a committed UAV trajectory. For a
longer duration, we have more time available to plan to the
next goal assigned to the UAV. Moreover, these results show
that the solution can still improve after the third iteration and
that a local minimum is not encountered by then.

VII. CONCLUSION AND FUTURE WORK

We present two search-based approaches for generating
robot and sensor trajectories in goal-directed 2D cover-
age tasks, namely Sensor Planning with Sensor History
(SPLASH) and Sensor Planning with Local Iterative
Tunneling (SPLIT). SPLASH solves for robot and sensor
trajectories independently in state spaces while maintaining
a history of sensor headings. SPLIT is a two-step approach
that refines this solution by searching its local neighborhood
in the joint space for a better solution. We show that
SPLASH is a practical alternative to to running standard
search-based planning in the full joint space of robot and
sensor state variables, and that SPLIT can be used to further
refine the solution computed by SPLASH given enough time.

A limitation of ITSA*, and consequently of SPLIT, is
that the A* searches do not reuse any search efforts between
subsequent iterations, and so each iteration takes longer than
the last. Reusing search efforts between iterations will lead
to considerable speed-ups, leading to faster refinement of
the trajectory. Further, we do not look into maintaining
sensor histories within SPLIT. It can be useful to adaptively
increase the size of the sensor history maintained with
increasing iterations in SPLIT. We set aside these two
limitations as opportunities for future work.
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