
Cooperation-Aware Lane Change Maneuver in Dense Traffic based on
Model Predictive Control with Recurrent Neural Network

Sangjae Bae1∗, Dhruv Saxena2, Alireza Nakhaei3, Chiho Choi3, Kikuo Fujimura3, and Scott Moura1

Abstract— This paper presents a real-time lane change control
framework of autonomous driving in dense traffic, which
exploits cooperative behaviors of other drivers. This paper
focuses on heavy traffic where vehicles cannot change lanes
without cooperating with other drivers. In this case, classical
robust controls may not apply since there is no “safe” area
to merge to without interacting with the other drivers. That
said, modeling complex and interactive human behaviors is
highly non-trivial from the perspective of control engineers.
We propose a mathematical control framework based on Model
Predictive Control (MPC) encompassing a state-of-the-art Re-
current Neural network (RNN) architecture. In particular,
RNN predicts interactive motions of other drivers in response
to potential actions of the autonomous vehicle, which are
then systematically evaluated in safety constraints. We also
propose a real-time heuristic algorithm to find locally optimal
control inputs. Finally, quantitative and qualitative analysis on
simulation studies are presented to illustrate the benefits of the
proposed framework.

I. INTRODUCTION

An autonomous-driving vehicle is no longer a futuristic
concept and extensive research have been conducted in
various aspects, spanning from localization, perception, and
controls, including implementation and validation. From the
perspective of control engineering, designing a controller
that ensures safety in various traffic conditions (e.g., arterial-
roads, highways in free-flow/dense traffic, with/without traf-
fic lights) has been a principal research focus. This paper
focuses on lane change in dense traffic.

Due to the importance of safety, many publications have
focused on robust control that guarantee collision avoidance
in the face of uncertainty. Unlike other autonomous robots,
autonomous-driving vehicles can take advantage of existing
roadway infrastructure, such as arterial roads and highways.
By exploiting the roadway for guidance, longitudinal control
designs have proven their effectiveness in maintaining a
safety distance to a front vehicle, as well as maintaining driv-
ing comfort and energy efficiency [1], [2]. A lane-changing
controller extends longitudinal control without significant
mathematical modifications by recognizing additional lanes
and vehicles [3]. Lane-changing controllers often utilize
probabilistic models [4], [5] or scenario-based models [6],
[7] to predict adjacent drivers’ motions and intentions, which
primarily define a safe area in a robust manner.
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Fig. 1: The autonomous-driving vehicle (in green) intends to
change lanes, within a restricted merging area. The traffic is dense
with narrow inter-vehicle intervals that are spatially insufficient for
a vehicle to merge into. The autonomous-driving vehicle would get
stuck in the merging area, unless other drivers slow down to make
a space for the vehicle.

Unfortunately, those robust methods may not apply in
highly dense traffic without “safe” areas to merge into (see
Fig. 1). In dense traffic conditions, interactions with other
drivers are essential to successfully change lanes by lever-
aging cooperative behavior. That is, drivers can potentially
slow down to create a spatial interval so that another vehicle
can merge in. That said, modeling interactive behaviors by
formal statistical or scenario-based approaches is highly non-
trivial, due to its complex and stochastic nature as well
as computational challenges. Consequently, lane changing
that exploits cooperation with other drivers remains as an
open research question. Nonetheless, solving this problem is
critical to realizing fully autonomous-driving vehicles [8].

There is a small yet rich body of literature focused on
human interactions during lane change or merging [9]–
[14]. These methods focus on interactions between just two
vehicles at a time, in lane changing or lane keeping. In more
realistic settings of highly dense traffic, each vehicle’s motion
is reactive to multiple vehicles simultaneously. Moreover,
the ego-vehicle lacks knowledge of other drivers’ interaction
dynamics. Thus game theoretic or first-principles models
are of limited use. Recently, Reinforcement Learning (RL)
techniques have been thoroughly investigated. RL methods
are appealing for their potential in finding maneuvers under
interactive or unknown traffic conditions [12], [15], [16]
without any first-principles modeling. However, safety, re-
liability, and/or interpretability limit RL’s practical use when
human safety is at stake, see e.g. [17], [18].

That being said, an increasing body of literature has
applied Deep Neural Network architectures for autonomous
driving and Advanced Driving Assistance Systems (ADAS).
Deep neural networks have proven useful in explaining
complex environments [19]–[21]. Recurrent Neural Network
(RNN) architectures have been particularly effective in pre-
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dicting motions of human (drivers), with respect to both
accuracy [22], [23] and computational efficiency [24]. There-
fore, it would be natural to take advantage of those advances
for controller design, yet still leverage rigorous control theory
[25] and established vehicle dynamics models [26] to yield
safety guarantees. That is, we seek a controller that embeds
accurate predictions of human interaction via RNNs, yet still
maintains safety guarantees afforded by control theory. The
incorporation of these two elements would yield a controller
that is reliable, interpretable, and tunable, while containing a
data-driven model that captures interactive motions between
drivers. It is still challenging to mathematically incorporate
RNN into formal controller design, and to solve the cor-
responding control problem effectively and efficiently. We
address these challenges in this paper.

We add two original contributions to the literature: (i) We
propose a mathematical control framework that systemati-
cally evaluates several other drivers’ interactive motions, in
highly dense traffic on the highway. The framework par-
tially exploits Recurrent Neural networks (RNN) to predict
(nonlinear) interactive motions, which are incorporated as
safety constraints. Optimal control inputs are obtained via
Model Predictive Control (MPC) based on vehicle dynamics.
(ii) We propose a real-time rollout-based heuristic algorithm
that sequentially evaluates other driver’s reactions and finds
locally optimal solutions. The idea of incorporating RNN as
a prediction model into an MPC controller is straightforward.
However, the complexity and nonlinearity of RNN give chal-
lenges for classical optimization algorithms. We show our
heuristic algorithm finds locally optimal solutions effectively
and efficiently.

The paper is organized in the following manner. Section
II describes the mathematical formulation of the proposed
control framework, and the heuristic algorithm. Section III
presents and analyzes simulation results to validate the
proposed framework. Section IV summarizes the paper’s
contributions.

II. CONTROLLER DESIGN

To design a lane changing controller for highly dense
traffic, it is critical to estimate how surrounding vehicles
will react to our vehicle. Predicting their behaviors, however,
is challenging due to their interactive nature, and it is
complex to model either physically or statistically, using
formal methods such as Markov chains. We therefore employ
a Recurrent Neural Network architecture (RNN), particularly
a Social Generative Adversarial Network (SGAN) that has
been successful in predicting interactive human behaviors
in crowded spaces [24]. Fig. 2 shows a schematic of the
control framework. The key intuition of the framework is
the following. The controller uses Model Predictive Control
(MPC) as the basis, which takes current states (position,
velocity, and heading) and positions of surrounding vehicles
as inputs and provides a pair of acceleration and steering
angle as output. In the MPC controller, the optmization
objective is to track a target lane, a desired speed, and penal-
ize large control efforts, while satisfying system dynamics

MPC Controller

Optimization Problem

Objective function:
lane tracking, acceleration,
steering, jerk, steering rate,

desired speed

Constraints:

Bicycle Kinematics

Safety constraints
Neural Network (SGAN):
predict vehicles' motion

Solver

State

Acceleration, 
Steering angle

Positions
of other
vehicles

Fig. 2: Diagram of the control framework with a Recurrent Neural
network, SGAN. The solver (small box in MPC controller) can be
based on different algorithms.

and avoiding collisions. The solver, based on a heuristic
algorithm, solves the optimization problem at each time step
by exploiting a trained SGAN to predict the other vehicles’
interactive motions that are reactive to the ego vehicle’s 1

actions. Note that the predicted motions are incorporated into
the constraint of collision avoidance. The controller design
is detailed in the following sections.

A. System Dynamics

We utilize the nonlinear kinematic bicycle model in [26]
to represent the vehicle dynamics. For completeness, we re-
write the kinematics here:

ẋ = v cos(ψ + β) (1)
ẏ = v sin(ψ + β) (2)

ψ̇ =
v

lr
sin(β) (3)

v̇ = a (4)

β = tan−1

(
lr

lf + lr
tan(δ)

)
(5)

where (x,y) is the Cartesian coordinate for the center of
vehicle, ψ is the inertial heading, v is the vehicle speed,
a is the acceleration of the car’s center in the same direction
as the velocity, and lf and lr indicate the distance from the
center of the car to the front axles and and to the rear axles,
respectively. The control inputs are: (front wheel) steering
angle δ and acceleration a. We use Euler discretization to
obtain a discrete-time dynamical model in the form:

z(t+ 1) = f(z(t), u(t)), (6)

where z =
[
x y ψ v

]>
and u =

[
a δ

]>
for time t.

B. Control Objective

The control objective is to merge to target lane, while
avoiding collisions with other vehicles. We prefer to change
lanes sooner. We also prefer smooth accelerations and steer-
ing for drive comfort. The objective function is formulated:

J =

t+T∑
`=t

λdiv(x(`|t);xend)D(`|t) (7)

1We refer to “ego vehicle” as the vehicle that is controlled.
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+

t+T∑
`=t

λv‖v(`|t)− vref‖2 (8)

+

t+T−1∑
`=t

λδ‖δ(`|t)‖2 (9)

+

t+T−1∑
`=t

λa‖a(`|t)‖2 (10)

+

t+T−1∑
`=t+1

λ∆δ‖δ(`|t)− δ(`− 1|t)‖2 (11)

+

t+T−1∑
`=t+1

λ∆a‖a(`|t)− a(`− 1|t)‖2 (12)

where (`|t) indicates time ` based on the measurements at
time t. Symbol xend is the latitude coordinate of the road-
end, D(`|t) is the distance norm for the vector between the
ego vehicle’s center and the target lane at time `, vref is
the reference velocity. Each penalty is regularized with λdiv ,
λv , λδ , λa, λ∆δ , and λ∆a, respectively. We incentivize a
timely lane change with the dynamic weight λdiv , written as
a convex-function, λdiv = ‖ 1

xend−x‖. The term (7) penalizes
the divergence of the center of the vehicle from the vertical
center of the target lane. The term (9) and (10) penalize the
control effort of steering angle and acceleration, respectively.
The term (11) and (12) penalize the steering rate and jerk,
respectively, for drive comfort.

C. Constraints for Safety with a Recurrent Neural Network

To quantify safety, we consider a distance measure be-
tween two vehicles. That is, if a distance between two
vehicles is zero, it means they collide into each other.
A mathematical measure of distance between two vehicles
depends on how each vehicle is shaped, which we discuss
next.

1) Vehicle Shape Model: We model the vehicle shape
with three circles as illustrated in Fig. 3. A Euclidean
distance between two circles are then computed analytically.
To constrain safety, a minimum distance between any pairs
of circles must be greater than a safety bound. Formally:

gi(x, y) = min
p,q∈{−1,0,1}

di(p, q) ≥ ε, (13)

where: di(p, q)

=
[(
(x+ p(h− w) cosψ)− (xi + q(hi − wi) cosψi)

)2
+
(
(y + p(h− w) sinψ)− (yi + q(hi − wi) sinψi)

)2] 1
2

− (w + wi), (14)

and w and h are, respectively, half width and half height of
the vehicle, respectively, and ε is a safety bound. Subscript
i indicates vehicle i.

2) Interactive Motion Prediction: Drivers’ motions are
responsive to interactions with each other, and consequently
the motions must be predicted simultaneously. We adopt
SGAN from [24] which efficiently and effectively captures

Fig. 3: Vehicle shape modeled by three circles. Note that multiple
circles of various radii can be applied to any vehicle shape and size.

interactions between agents (drivers). SGAN is composed of
a generator and discriminator that are adversarial to each
other. Both the generator and discriminator are comprised
of long-short term memory (LSTM) networks to account
for the sequential nature of agents’ motion. The following
module aggregates the agents’ motion states to evaluate their
interactions. This pooling process is essentially to share the
motion history between agents, generating social interactions
as a pooled tensor Pi for each agent i. The decoder in
the generator then predicts multiple trajectories that are
socially interactive with each other. SGAN takes as an input
a sequence of positions for each agent within a scene over
an observation time horizon Tobs. It outputs a sequence of
positions for each agent over a prediction time horizon Tpred.
Interested readers are referred to [24] for more details. It
is important to highlight that a trained SGAN will predict
the most probable reactions of other vehicles based on the
control commands on the ego vehicle, and the history of
previous actions. However, in reality, the reactions of other
vehicles might be different.

3) Incorporation of Recurrent Neural Network into Safety
Constraints: A trained SGAN predicts the evolution of
vehicle i’s centroid. These predictions are incorporated into
safety constraints (13). To formalize, we denote a trained
SGAN as a function φ(t) that maps observed trajectories to
predicted trajectories for N nearby vehicles:

φ(t) :
(x1(t), y1(t)) · · · (xN (t), yN (t))

...
...

...
(x1(t− Tobs + 1),
y1(t− Tobs + 1))

· · · (xN (t− Tobs + 1),
yN (t− Tobs + 1))


↓

(x̂1(t+ 1), ŷ1(t+ 1)) · · · (x̂N (t+ 1), ŷN (t+ 1))
... · · ·

...
(x̂1(t+ Tpred),
ŷ1(t+ Tpred))

· · · (x̂N (t+ Tpred),
ŷN (t+ Tpred))

 ,
(15)

where ·̂ indicates a predicted value. Given the observations
until time t, the coordinates of vehicle i at time t + 1 are
represented as x̂i(t+ 1) = φi,x(t) and ŷi(t+ 1) = φi,y(t).

D. Control Problem Formulation
The complete optimization problem for the receding hori-

zon control is:

min
z,a,δ

J =

t+T∑
`=t

(
λdiv(x(`|t);xend)D(`|t)
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+ λv‖v(`|t)− vref‖2
)

+

t+T−1∑
`=t

(
λδ‖δ(`|t)‖2 + λa‖a(`|t)‖2

)
+

t+T−1∑
`=t+1

(
λ∆δ‖δ(`|t)− δ(`− 1|t)‖2

+ λ∆a‖a(`|t)− a(`− 1|t)‖2
)

(16)

subject to:

z(`+ 1|t) = f(z(`|t), δ(`|t), a(`|t)) (17)
gi(z(`+ 1|t)) ≥ ε, ∀i ∈ {1, · · · , Nveh} (18)

δ(`|t) ∈ [δmin, δmax] (19)
a(`|t) ∈ [amin, amax] (20)

x(`+ 1|t) ≤ xend (21)

where δmin and δmax are the minimum and maximum
steering angle rate, respectively, and amin and amax are
the minimum and maximum acceleration, respectively. The
constraint (21) ensures that the ego vehicle changes lanes
before the road-end xend.

E. Heuristic Algorithm

Note that the inequality constraint (18) does not form
a convex set. We assume that the mathematical form of
the SGAN is not known, i.e. it is black-box, and we can
only evaluate its output given an input. Along with the
nonlinear equality constraint (17), it is non-trivial to find
a solution with canonical optimization algorithms, such as
gradient descent or Newton methods. We propose a rollout-
based algorithm that finds locally optimal solutions in a
time efficient manner. The process is as follows. From the
current state at time t, the controller randomly generates
a finite set of control sequences over the time horizon
T . That is, U = {U1, · · · , Uj , · · · , UNsim} where Uj =[
uj(0|t) · · · uj(T − 1|t)

]>
. Then the controller evaluates

the cumulative cost (16) for each control sequence and
chooses one that has a minimum cost over the time horizon
T . The controller takes the first control input from the opti-
mal sequence and discards the rest. Algorithm 1 formalizes
the procedure.

The process of finding the optimal sequence (line 5 in
Algorithm 1) is the following. At each time step `, consider
the jth candidate control sequence Uj . The controller (i)
runs SGAN to predict the motions of surrounding vehicles,
(ii) it propagates the ego vehicle through the dynamics (17)
given control Uj , (iii) it checks the constraints (18)-(21), and
discards the candidate sequence if the constraints are vio-
lated, and (iv) it updates the cumulative cost (16). Predicted
positions of other vehicles conditioned on controls of the
ego vehicle imply the cooperativeness of the other vehicles.
Note that evaluating each control sequence candidate can be
parallelized, and therefore a parallel computation framework
can be applied to improve computational efficiency.

Algorithm 1 is straightforward to implement, however,
it may require substantial computation power to find a

Algorithm 1: Monte Carlo Roll-out Algorithm
Init : states z = z0,

other vehicles’ position (xi, yi) = (xi0, yi0)
for all i ∈ {1, · · · , Nveh}

1 while x < xend and D 6= 0 do
2 Randomly generate a total of Nsim control

sequences over T while satisfying (19), (20)
3 U = {U1, · · · , Uj , · · · , UNsim}

4 Find the optimal sequence that minimizes
cumulative cost over T and that is feasible with
(18)

5 U∗ ← argminU∈U (16)

6 Propagate through dynamics (17) with the first
element of U∗

7 z ← f(z, [U∗]0)

8 Observe positions of other vehicles at the current
time t

9 (xi, yi)← (xi(t), yi(t)) for all i
10 end

solution in real-time, depending on the time horizon T and
sample size Nsim. That said, unlike other applications of
motion planning algorithms, autonomous driving on roads
has specific patterns in terms of actions in specific driving
scenarios. For example, if a vehicle keeps driving in the
same lane, large steering angles do not have to be explored.
Similarly, if a vehicle changes lane to the left, then steering
angles to right do not have to be explored. From those
observations, a smaller size of action spaces (or, domain of
control inputs) can be specified in each driving scenario: (i)
keeping lane, (ii) changing lane to the left, and (iii) changing
lane to the right. Denote the action spaces of lane keeping
by AM , changing lane to the left by AL, and changing lane
to the right by AR. Then each action space can read:

AM = [amin, amax]× [αδmin, αδmax], (22)
AL = [amin, amax]× [0, δmax], (23)
AR = [amin, amax]× [δmin, 0], (24)

where α ∈ [0, 1], δ > 0 indicates steering to the left, and
δ < 0 indicates steering to the right. The action space (23)
indicates that we only consider steering angles to the left
when turning left, and similarly for (24).

III. SIMULATION STUDY

A. Driver Model of Cooperativeness

For the simulation study, we have a driver model in which
the longitudinal dynamics is controlled by an intelligent
driver model (IDM) from [27]. The lane changing behavior
is governed by the strategy of Minimizing Overall Braking
Induced by Lane changes (MOBIL) from [28]. The driver
model is also based on the bicycle kinematics in Section II-A.
Additionally, we introduce a parameter for cooperativeness
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A: forced yield

B: selective yield

B: selective yield𝜂"

𝜂"

Fig. 4: Forced yield zone (red area labeled with A) and selective
yield zone (yellow area labeled with B). The dashed lines indicate
the boundaries of the center lane. If a vehicle from the next lane
intersects with the path of the vehicle, i.e. in zone A, the vehicle in
the center lane must stop and wait until the other vehicle cuts into
the center lane. If the other vehicle intersects with zone B, then the
vehicle in the center lane decides to either yield or not, according to
the cooperativeness parameter ηc. Zone B corresponds to a vertical
perception range, and the range can be adjusted by ηp.

ηc ∈ [0, 1] to the driver model. If ηc = 1, then a vehicle
stops and waits until another vehicle within the selective
yield zone (zone B in Fig. 4) overtakes. If ηc = 0, then
the vehicle ignores neighboring vehicles and drives forward.
If 0 < ηc < 1, then the yield action is randomly sampled
from the Bernoulli distribution with probability p = ηc.

B. Simulation Scenario Overview

In the simulation study, we consider a highway segment
with dense traffic, illustrated in Fig. 5. In the scene, the ego
vehicle (in green) plans to change lanes from the current lane
(lane 1) to the next lane (lane 2). However, the vehicles are
driving with narrow distance intervals between each other,
which are not large enough for the ego vehicle to cut in
without cooperating with other vehicles (in various shades
of blue). Given this challenge, the controller seeks a pair
of acceleration and steering angle trajectories to induce the
other vehicles to make space for the ego vehicle to cut in.

Only the ego vehicle uses the controller designed in
Section II and the other vehicles (in blue) are based on the
driver model in Section III-A with heterogeneous parameter
settings. The controller design parameters are such that
the divergence from the target lane is more significantly
penalized relative to the other penalty terms. The list of
controller design parameters is detailed in Table I. Note that
it is preferred to have a receding time horizon T that is
sufficiently long to account for other drivers’ reaction time.
The SGAN embedded in the controller predict positions of
any vehicles within the range of 10 [m] from the ego vehicle.

The driver model parameters are set in the following man-
ner: (i) The minimum distance between vehicles is shorter
than the vehicle length, which creates the highly dense traffic
we are interested in. (ii) The other drivers drive realistically,
i.e. they apply physically feasible acceleration and steering
angles. (iii) The other drivers’ motions are noisy, i.e. their
center positions oscillate and their accelerations are aug-
mented with noise to challenge the controller’s robustness.
The driver model parameters are tabulated in Table II. Note
that the parameters of each driver are sampled from uniform
distributions, denoted by U(·, ·), to account for heteroge-

1

2

3

Fig. 5: Traffic scenario with three lanes. Green indicates the ego
vehicle, red indicates a stopped vehicle, i.e. dead-end of the lane,
and the shades of blue indicate other drivers. The lighter blue
corresponds to less cooperative drivers, i.e. ηc near 0. Each number
in the white rectangle indicates the lane number.

Param Description Value

T Receding time horizon [s] 2.8
Nsim Control sequence sample size 32
∆t Time step size [s] 0.4
λdiv Weight on divergence from a target lane 12000
λv Weight on divergence from a desired speed 1000
λδ Weight on steering angle 500
λa Weight on acceleration 500
λ∆δ Weight on steering rate 100
λ∆a Weight on jerk 100
δmin Minimum steering angle [rad] -0.3
δmax Maximum steering angle [rad] 0.3
amin Minimum acceleration [m2/s] -4.0
amax maximum acceleration [m2/s] 3.5
xend Length of the current lane [m] 50
vref Desired velocity [m/s] 10

TABLE I: Controller design parameters

neous behaviors of drivers. Additionally, we assume that all
vehicles have the same physical dimensions, for brevity. We
also assume that vehicles have perfect perceptions; that is,
there is no measurement bias in the vehicles’ positions.

The simulation study utilizes [29] for simulation and vi-
sualization, and runs on a Linux machine (Intel(R) Xeon(R)
CPU E5-2640 v4 @ 2.40GHz with NVIDIA GeForce GTX
TITAN Black).

C. Training SGAN for Motion Prediction

Table III lists hyper parameters for the SGAN used in
the simulation study. Training and validation datasets are
generated by simulations with only the driver model from
Section III-A, with heterogeneous parameters from Table II.
The dataset is collected from multiple scenarios in various
traffic densities, from free flow to dense traffic. In the dataset,
we also add noise to the positions so that the trained neural
network becomes more robust to noisy inputs. With a total

Param Description Value

ṽref Reference velocity [m/s] U(2, 5)

T̃ Safe time headway [s] U(1, 2)
ãmax Maximum acceleration [m/s2] U(2.5, 3.5)

b̃ Comfortable deceleration [m/s2] U(1.5, 2.5)

δ̃ Acceleration exponent U(3.5, 4.5)
s̃0 Minimum distance to front vehicle [m] U(1, 3)
ηc Cooperativeness ∈ [0, 1] U(0, 1)
ηp Perception range [m] U(−0.15, 0.15)
w Length from center to side of vehicle [m] 0.9
h Length from center to front of vehicle [m] 2

TABLE II: Driver model design parameters

1213

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 20,2023 at 17:02:57 UTC from IEEE Xplore.  Restrictions apply. 



Param Description Value

Tobs Observation time horizon 8
Tpred Prediction time horizon 2
Nb Batch size 64
Demb Embedding dimension 64
Dmlp MLP dimension 256
DG,e Hidden layer dimension of encoder (generator) 32
DG,d Hidden layer dimension of decoder (generator) 64
DD,e Hidden layer dimension of encoder (discriminator) 64
Dbot Bottleneck dimension in Pooling module 1024
αG Generator learning rate 5 · 10−4

αD Discriminator learning rate 5 · 10−4

TABLE III: SGAN parameters

25 30 35 40 45 50

- 1
0
1
2
3
4
5
6
7
8

Longitude [m]

La
tit

ud
e 

[m
]

Ground Truth
SGAN

Driving	direction

Fig. 6: Motions predicted by SGAN. Rectangles in green, blue, and
red indicate the ego vehicle, other vehicles, and the stopped vehicles
respectively. Dashed lines represent the lane boundary. Each circular
point indicates the vehicle center at each time step.

of 27550 data points, training the SGAN with a GPU takes
approximately 18 hours. An example of motions predicted
by SGAN, compared to ground truth, are illustrated in Fig. 6.

The SGAN has 1.872 [m] of average displacement error
and 2.643 [m] of final displacement error after Tpred = 2,
for the training data. It is important to note that the training
dataset does not include the testing scenarios. Also, our
ultimate goal is safe lane change, as discussed next, not
zero-error motion prediction. Note that SGAN can provide a
distribution of predicted motions, which can be incorporated
into the optimization problem as chance constraints, thereby
enabling a robust formulation. Also, different methods for
designing loss functions for SGAN training can be applied,
which are topics for future work.

D. Simulation Results and Analysis

Fig. 7 illustrates the simulated position trajectories. The
ego vehicle (in green) often stops and waits before merging
(at t1 and t2), since otherwise the safety constraint (18) can
be violated. As the ego vehicle gets closer to the target lane
(the middle lane), the vehicle on the target lane reacts by
slowing down the speed, to make a space for the ego vehicle
to cut in (at t3). As soon as an enough space is made, the
ego vehicle merges into the target lane.

These interactive behaviors with the ego vehicle are also
observed in Fig. 8. While the ego vehicle is interacting with
other vehicles to merge over, between 3.2∼18.6 [s], both
the acceleration and steering angle fluctuate significantly

25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

- 1
0
1
2
3
4
5
6
7
8

Longitute [m]

La
tit

ud
e 

[m
]

Driving	direction

Slow down and merge

Stop and wait

Slow down and yield

𝑡" 𝑡#

𝑡$

𝑡$

Fig. 7: Simulated position trajectories. A dot indicates a center
coordinate of a vehicle at each time step and the color of dots
distinguishes between trajectories of vehicles. A distance between
two successive dots demonstrates how fast a vehicle moves. The
triangle labeled with tn highlights a center position at time tn,
n = 1, . . . , 3. The rectangles illustrate the shape of the vehicles
(colors are described in the caption of Fig. 6). The positions of the
rectangles indicate the initial positions.

0 10 20 30

- 7.5

- 5.0

- 2.5

0.0

2.5

0 10 20 30
- 0.3

- 0.2

- 0.1

0.0

0.1

0.2

0.3

Merging Lane keepingInteracting with other vehicles

Fig. 8: Acceleration (top) and steering angle (bottom) profile of
the ego vehicle. The ego vehicle initiates merging to a target lane
at time 18.6[s]. The maximum braking is applied when no feasible
solution is found.

to quickly get closer to the lane while avoiding collision.
Between 18.6∼20 [s], the ego vehicle changes lanes and
the acceleration still fluctuates. This is again because the
ego vehicle needs to move quickly, but must stop whenever
another vehicle gets too close. Once the ego vehicle merges
into the target lane, after 20[s], the acceleration and steering
angle fluctuate less, and the vehicle drives smoothly.

Note that the other vehicles may or may not be coop-
erative, depending on their characteristics. Therefore, we
quantitatively validate the controller based on Monte Carlo
simulations with various characteristics of other drivers. In
each simulation, all vehicles are randomly positioned, except
for the stopped vehicle (dead-end of the road), and the driver
model parameters in Table II are sampled from uniform
distributions. With respect to different cooperation levels,
we consider three cases: (i) all drivers are cooperative (i.e.
ηc,i = 1 for all drivers i in the scene); (ii) all drivers are
aggressive (i.e. ηc,i = 0); and (iii) they are mixed (i.e.
ηc,i ∈ [0, 1]). It is important to highlight that the ego vehicle

1214

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 20,2023 at 17:02:57 UTC from IEEE Xplore.  Restrictions apply. 



Constant SGAN Ground
Velocity Truth

Success Coop. 96% 99% 99%
rate Mix. 90% 97% 97%

Agg. 48% 81% 89%

Mean time Coop. 25.95 (±6.42) 23.97 (±5.10) 24.53 (±5.11)
to merge Mix. 26.97 (±7.07) 25.76 (±5.37) 26.21 (±5.58)

Agg. 35.24 (±6.12) 29.32 (±7.07) 28.31 (±6.22)

Mean min Coop. 0.69 (±0.15) 0.49 (±0.18) 0.72 (±0.14)
distance Mix. 0.58 (±0.19) 0.42 (±0.19) 0.61 (±0.17)

Agg. 0.35 (±0.18) 0.30 (±0.14) 0.55 (±0.16)

TABLE IV: Monte Carlo simulation results (a total of 100 simu-
lations each) for three motion prediction models, constant velocity,
SGAN, and ground truth, for different level of cooperativeness. A
trip is “successful” if the ego vehicle changes lanes to the target
lane within the time limit (40 [s]). Until the time limit, the target
lane is packed with vehicles and there is no empty space where the
ego vehicle can overtake without cooperating with other drivers.
The “time to merge” indicates the time period [s] that the ego
vehicle takes to change lanes to the target lane. The “min distance”
indicates the minimum distance [m] between the ego vehicle and
other vehicles at any point of the simulation. The value in the
parentheses shows the standard deviation.

does not know how cooperative the other drivers are. We
found that when the drivers are all cooperative, changing
lanes into the target lane within the time limit is more
likely than when the drivers are either partially cooperative
(i.e. mixed) or non-cooperative (i.e. aggressive), as shown
in Table IV. Still, it is possible that the ego vehicle cannot
change lanes within the time limit (i.e. the success rate is
less than 100%) and ends up being stranded in the current
lane. This is because the drivers may have short perception
ranges, determined by ηp, which can result in the drivers
not detecting the ego vehicle and keeping their speed, even
though they are cooperative. Nonetheless, even when all
drivers are aggressive, the controller can successfully change
lanes in most cases. One caveat is that the ego vehicle can
get contiguous to the other vehicles, shown from mean min
distance in Table IV, especially when the other drivers are
not being cooperative and pass the ego vehicle, although no
collision was observed in any of the simulations.

We also compare the performance of the controller with
SGAN to a simple motion prediction method: a constant
velocity model. The constant velocity model predicts that
a vehicle will maintain the same speed in the next time
step. We also compare the SGAN-enabled controller to a
controller with perfect predictions of other vehicles’ motions,
i.e. ground truth2. In general, we found that more accurate
predictions lead to higher success rates. In fact, when all
drivers are cooperative, all three prediction models can lead
to successful lane change. That is, the imprecision of predic-
tions on drivers’ interactive motions is not critical when the
drivers are very cooperative, since the drivers easily submit
space to other vehicles, even with rough control inputs
resulting from inaccurate motion predictions. This, however,

2In the case of perfect predictions for other vehicles’ motion, the simulator
propagates other vehicles’ motion based on their driver model, and the
propagated motions are used by the controller as predictions.

is no longer valid if the drivers are aggressive. When they are
aggressive, the ego vehicle needs a precise control that care-
fully induces cooperation from the other drivers. This cannot
occur with the simple constant velocity model. Consequently,
the success rate with SGAN is significantly higher (+33%)
than that with the simple constant velocity model, when
the drivers are aggressive. We also found that the controller
with more accurate predictions tends to change lanes more
quickly. That is, significant motion prediction errors for
the other vehicles lead the ego vehicle to positions where
it cannot effectively influence its neighboring vehicle, and
create room for a safe lane change. As a consequence, the ego
vehicle must let the coming vehicle pass and waits for next
vehicle to cooperate. Finally, the minimum distances tend to
be significantly larger with perfect predictions compared to
that with SGAN. That is, more precise predictions help the
controller secure a safer trajectory during lane change.

Additionally, in our recent paper [16], we compared the
performance of the proposed controller with a learning-
based controller, in terms of the success rate, time to merge,
and minimum distances. The SGAN-enabled controller out-
performs the learning-based controller in the success rate,
(arguably) safety as measured by minimum distances, and
reliability as measured by variances of performance metrics,
while taking more time to merge. Interested readers are
referred to [16] for detailed comparisons.

Finding a minimum distance between two vehicles analyt-
ically is computationally efficient, even though it is computed
as the minimum distance among any pairs of circles. The
circle model takes about 9 · 10−6 [s] on average to compute
a minimum distance between two vehicles at any time. As
a consequence, finding one control input at each time step
takes less than 0.2 [s], which suggests this approach is
amenable to real-time control.

Simulation code and videos are available at https://
github.com/honda-research-institute/
NNMPC.jl.

E. Limitations and Future Work

No collision was observed in the simulation studies.
However, the controller cannot guarantee zero collisions
with other drivers, due to the absence of “safe” area where
the ego vehicle can merge into without cooperating with
other drivers. Still, improved predictions can help the ego
vehicle keep a safe distance with other vehicles, as shown in
Table IV. Improving the SGAN prediction accuracy by care-
fully designing the training set, loss functions, or network
structures remains for future work.

The proposed algorithm somewhat naively generates the
control candidates by random sampling, even though action
spaces are specified in each driving scenario (keeping lane
or changing lane). We can further reduce the actions spaces,
using correlation between steering angle and acceleration,
for each driving scenario. Also, the proposed algorithm
(Algorithm 1) is heuristic. That is, even in an identical
scenario, the controller may find a different solution. This
might be acceptable in many cases where the constraints are
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not violated. However, an advanced optimization algorithm
can be further studied to find a locally optimal solution with
a convergence guarantee.

The proposed controller design combines trajectory plan-
ning and controls, which can be susceptible to a model mis-
match between the controller and system plant. A commonly-
used two-stage planning and control framework [30] can be
applied to mitigate the model mismatch issue, which remains
for future work.

IV. CONCLUSION

This paper formalizes a control framework for autonomous
lane changing in dense traffic. This paper particularly fo-
cuses on heavy traffic where vehicles cannot merge into
a lane without cooperating with other drivers. The control
framework incorporates a Recurrent Neural Network (RNN)
architecture, namely a state-of-the-art Social Generative Ad-
versarial Network (SGAN), to predict interactive motions of
multiple drivers. The predicted motions are systematically
evaluated in safety constraints to evaluate control inputs. A
heuristic algorithm based on Monte Carlo simulation along
with a roll-out approach is developed to find feasible solu-
tions in a computationally efficient manner. The qualitative
and quantitative analysis in the simulation studies illustrate
the strong potential of the proposed control framework for
achieving automatic and safe lane changes by cooperating
with other drivers.
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