
Supervised Learning of Corrective Maneuvers for
Vision-Based Autonomous Flight

DHRUV MAURIA SAXENA
dhruvsaxena@cmu.edu

AUGUST 2017

CMU-RI-TR-17-55

Robotics Institute
CARNEGIE MELLON UNIVERSITY

Thesis Committee:
Martial Hebert, Chair

Kris Kitani
Abhijeet Tallavajhula

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Robotics.

mailto:dhruvsaxena@cmu.edu

ABSTRACT

The ability of autonomous mobile robots to react to and recover from potential
failures of on-board systems is an important area of ongoing robotics research. With
increasing emphasis on robust systems and safe navigation, mobile robots must

be able to respond safely and intelligently to dangerous situations. Recent developments
in computer vision have made autonomous vision based navigation possible. However,
vision systems are known to be imperfect and prone to failure due to variable lighting,
terrain changes, and other environmental variables. The notion of introspection for
mobile robots has been developed recently which provides autonomous agents with a
self-evaluating capability. This allows them to assess the quality of decisions made by
them in the future based on the present input given or available to them. This thesis
focuses on the situation when an agent is in a situation where the input available is
unreliable (for whatever reason), and therefore any action taken using that input will
also likely be unreliable. In this paradigm, we propose two different solutions.

First, we describe a system for learning simple failure recovery maneuvers based on
experience. A failure instance is one where the input data is unreliable. This involves
both recognizing when the vision system is prone to failure, and associating failures with
appropriate responses that will most likely help the robot recover. We implement this
system on an autonomous quadrotor and demonstrate that behaviors learned with our
system are effective in recovering from situational perception failure, thereby improving
reliability in cluttered and uncertain forest environments.

While the first solution only looks at recovering after a failure has been detected, we
also consider the case where we pre-emptively avoid failures by proactively executing a
‘recovery’ maneuver if our system believes that for the current input, reliable or not, it
will improve performance. This is essentially a continuous case extension of the previous
solution which looked at discrete changes between a non-failure and failure mode. Again,
we evaluate our performance on an autonomous quadrotor in flight through a outdoor
forest environment.

i

ACKNOWLEDGEMENTS

While I might be the primary author for this document, there is a small group
of people that have contributed in one way or another to its contents. It was
a pleasure and privelege to spend every day over the last two years working

with some subset of this group of people. The primary recipient of my gratitude is my
advisor for this thesis, Martial Hebert. During our meetings there were moments when
he seemed almost omniscient, which was extremely helpful for someone relatively new
to the rigour of academic research like me. Martial is as solicitous about his students’
progress as one could hope for. He gave me freedom to dictate my research, and helped
me get things back on track when I inevitably strayed or felt lost. If I can be excused a
moment of appropriating the parlance of my generation, I will say that Martial is a cool
dude.

I worked on BIRD with an amazing group of students. Shreyansh Daftry, who is
probably sitting in some exotic corner of the world as I type this, laid the foundation that
this thesis builds upon while he was a Master’s student at Carnegie Mellon. Vince Kurtz,
who spent a summer on the project on an internship, helped develop and refine the early
part of this research. Arbaaz Khan worked on BIRD before and during my time at CMU,
lost a number of FIFA games to me, and also put in place part of the data collection and
training protocol I use. Sam Zeng is a licensed UAV pilot, so his role and its importance
during in-flight experiments cannot be understated.

I would be remiss not to acknowledge the 23 (going on 24) years of unconditional love
and support my parents have given me. I love them and everyday I strive to make them
prouder of me than the last. My brother, who I have been taller than for well over 5 years
now, is the other constant in my life. There is a constant flow of love, admiration, respect,
support and humour between us - traits of a strong sibling relationship.

Finally, to all of my friends at CMU and back home in India - old, new and unknown
alike - thank you!

iii

TABLE OF CONTENTS

Page

List of Tables vii

List of Figures ix

1 Introduction 1
1.1 Autonomous Flight . 2

1.2 Safe and Robust Systems . 3

1.3 BIRD . 4

1.4 Thesis Contributions . 4

1.4.1 Recovery Maneuver Selection . 5

1.4.2 Continuous Case Extension - Corrective Maneuvers 5

1.4.3 Outline . 6

2 Vision-Based Autonomous Flight 7
2.1 System Overview . 8

2.1.1 Quadrotor Platform . 8

2.2 Monocular Depth Estimation . 8

2.3 Introspection . 9

2.4 Planning and Control . 11

2.5 Past Work in BIRD . 11

2.6 Summary . 12

3 Recovery Maneuver Selection 13
3.1 Recovery Maneuvers . 13

3.2 Data Collection . 15

3.3 Predictor Training . 17

3.4 Predictor Inference . 18

v

TABLE OF CONTENTS

3.5 Experiments & Results . 19

3.5.1 Handflying . 19

3.5.2 Actual Flight . 20

3.6 Summary . 22

4 Learning Corrective Maneuvers 25
4.1 Data Collection . 26

4.1.1 Quality Value (λ) of Images . 26

4.1.2 Dataset Augmentation . 27

4.2 Classifier Training . 28

4.2.1 Cost-Sensitive Classification . 29

4.3 Experiments & Results . 31

4.4 Summary . 33

5 Conclusions & Future Work 39
5.1 Conclusions . 39

5.2 Future Work . 40

Bibliography 43

vi

LIST OF TABLES

TABLE Page

3.1 Images in the training set for recovery maneuvers. 18

3.2 Number of maneuvers that recovered or not during data collection. 19

3.3 Numerical breakdown of failures and recoveries during experiments. 21

4.1 Images in the training set for corrective maneuvers. 27

4.2 Labelled image dataset for corrective maneuvers. 29

4.3 Numerical breakdown of ∆λ and failure recoveries between naive and cost-

sensitive classification. 32

vii

LIST OF FIGURES

FIGURE Page

1.1 Real-world applications of autonomous quadrotors. 2

1.2 Goshawk flying through a forest. 5

2.1 BIRD Quadrotor Platform. 9

2.2 Two-stream introspection CNN architecture. 10

2.3 Trajectory library and monocular depth estimation. 11

3.1 Block diagram for learning failure responses. 14

3.2 Recovery maneuvers. 15

3.3 Training and testing area. 16

3.4 Examples of images that failed during flight. 17

3.5 Percentages of failure recovery during handflight and actual flight experiments. 20

3.6 Average flight distance without intervention in a dense, cluttered forest. . . . 22

4.1 Histograms of λ and ∆λ in our dataset. 35

4.2 Representation of the λ trajectories of maneuvers used for dataset augmenta-

tion. 36

4.3 Effect of cost-sensitive classification on a toy dataset. 37

4.4 ∆λ values of corrective maneuvers executed during handflight and actual

flight experiments. 38

4.5 Latest plot of average flight distance without intervention in a dense, cluttered

forest. 38

ix

C
H

A
P

T
E

R

1
INTRODUCTION

Contents
1.1 Autonomous Flight . 2

1.2 Safe and Robust Systems . 3

1.3 BIRD . 4

1.4 Thesis Contributions . 4

M icro Aerial Vehicles (MAVs) are one of the most popular robotics research

platforms, along with being a successful commercial and hobby product. They

span the gamut from platforms that can fit in the palm of a human hand, to

larger platforms that can carry several kilograms of payload, to platforms capable of

flying at over 150 kmph, and capable of recording production grade 4K video. Add on

the fact that MAVs can be equipped with any sensor imaginable, the capabilities of the

platform are endless.

Given the form factor, MAVs are easy to transport, deploy, operate and recover. They

can prove to be useful in any environment imaginable, provided that it is safe to fly. In the

hands of a well-trained remote pilot, the usefulness of MAVs cannot be under-estimated.

However, as we use these platforms over longer distances, in harsher conditions, bad

illumination settings, and generally unsafe environments for humans, making these

systems autonomous, safe and robust will be of utmost precedence. Regardless of the

skills of the available pilot, there will be a need for autonomous MAVs that can fly better

1

CHAPTER 1. INTRODUCTION

(a)
(b)

(c)

Figure 1.1: Quadrotors can be used for a variety of applications
including (a) flying through dense forests for surveillance or search-
and-rescue missions, (b) package delivery in urban environemnts,
(c) surveillance and reconnaissance missions as part of a disaster
response effort.

than the best human pilot. Figure 1.1 shows examples of the wide variety of applications

in which quadrotors can prove to be useful.

1.1 Autonomous Flight

Autonomous MAV flight has been a topic of research for several years. The various

components that go into this complicated task have been at the forefront of robotics

research. Planning algorithms, perception systems, robust control, multi-agent systems

etc. all form a part of the modern day understanding of autonomous MAV flight. There

has been a lot of work in generating time-optimal trajectories for quadrotors by utilizing

the differential flatness property of quadrotor dynamics [29]. It is possible to solve

quadratic programs to generate polynomial trajectories in the time domain that satisfy

the constraints placed on the dynamics [33]. Vision-based navigation of quadrotors is

another active area of research [15, 5]. These methods use cameras as exteroceptive

sensors to navigate through potentially unstructured and/or unknown environments.

Monocular cameras, RGB-D cameras, and stereo cameras have all been used for this

purpose. For a multi-agent team of quadrotors, the problem of optimally assigning goals

to the individual agents while also avoiding all collisions [40] is a higher-level task that

needs to be solved before the agents execute their individual trajectories. It is clear that

there are several pieces that need to work together to achieve safe autonomous flight of

quadrotor(s) in unknown and unstructured environments in the presence of obstacles.

2

1.2. SAFE AND ROBUST SYSTEMS

There are two major environments that quadrotors might operate in - indoors and

outdoors - that present their own unique challenges. Indoors, we might have the benefit

of using motion capture systems or other external cameras to aid state estimation and

localisation for autonomous flight, since there is no GPS signal available. Outdoors,

quadrotors can use GPS and seemingly infinite airspace for safe flight. There is obviously

research in both these areas that tries to use as little external information as possible,

and relies on onboard computation to come up with viable plans to perform the intended

task. This thesis is a small part of that effort, and uses a quadrotor flying outdoors in a

dense, GPS-denied forest as its research platform.

In terms of the overall picture of autonomous flight, it is imperative to recognise

the efforts that have been put in by the robotics community to tackle a vast variety of

applications. For example, they have been used for mapping indoor spaces individually

and collaboratively [16, 17, 13]. Helicopters are another popular platform capable of fast,

agile flight among cluttered obstacles [35] and acrobatic maneuvers [7]. Formation flight

of close to 50 nano-quadrotors has been achieved [32]. This could prove to be extremely

useful for mapping and surveying tight spaces packed with obstacles.

For outdoor applications, the challenge lies in the fact that the use of external sensors

is not viable. We cannot set up an outdoor motion capture system over an area even

somewhat close to a meaningful size, nor is it feasible to put up ‘beacons’ of some sort to

aid with state estimation and localisation. All sensing capabilities need to be on-board the

MAV. Machine learning algorithms have also been used for autonomous quadrotor flight

in outdoor environments [34, 18]. As we explore applications in previously unknown

spaces, these learning algorithms could prove to be useful in terms of generalizing to

a wide variety of environments. In this thesis we are limited by the unavailability of a

GPS signal inside a dense forest. Thus, the goal is to fly through a forest while avoiding

collisions with trees, bushes, and other foliage.

1.2 Safe and Robust Systems

As we approach higher and higher levels of autonomy in robotics systems, there is a

desire and need for these systems to be safe during the entirety of their operation. This

includes being robust to ‘noise’, whether that be in terms of environmental disturbances,

sensor imperfections, or general uncertainty about the robot’s belief over the world and

itself. There has been work in generating motion plans for robots with implicit safety

guarantees which ensure that at any given point along the plan, the robot will be able

3

CHAPTER 1. INTRODUCTION

to generate and execute a safety maneuver if necessary [36, 42]. The drawback of these

methods is that they rely on complete knowledge of the distribution of obstacles in the

environment, and have not been validated in the presence of unknown or dynamic obsta-

cles. There is also related work in using an offline computed library of safety maneuvers

and selecting one of these when the need arises [3]. Neither of these approaches consider

the case when the sensor information is unreliable, which precludes both generation and

selection of emergency maneuvers since safety can no longer be guaranteed.

On a slightly different note, researchers have explored the theoretical limits of fast

flight through cluttered obstacle distributions [23, 6]. Such analyses make assumptions

about the underlying distribution of obstacles in the environment in order to calculate

their bounds on robot speed and planning resolution.

1.3 BIRD

The majority of research presented in this thesis was conducted as part of the BIRD

Multidisciplinary University Research Initiatives (MURI) project under the Office of

Naval Research (ONR) grant on “Provably-Stable Vision-based Control of High-speed

Flights through Forest and Urban Environments”. It is common to look to nature for

inspiration during the development and deployment of physical systems. BIRD, appro-

priately named, in particular looks toward the natural ability of agile birds that can

swiftly maneuver through a dense forest during very high-speed flights. Figure 1.2 is an

image of a northern goshawk flying at speed through a forest. Thus, as far as outdoor

flight in cluttered environments is concerned, this is the holy grail and if it can be

achieved repeatedly, we can think about planning and executing complex missions in

these environments. Our particular quadrotor platform, which will be introduced and

described in detail in Chapter 2, has taken several steps in this direction over the last

few years. This thesis is a continuation of these efforts and takes one more step towards

achieving safe, autonomous outdoor flight.

1.4 Thesis Contributions

With regards to the problem of autonomous outdoor flight, in this thesis we look at the

particular problem of dealing with unreliable information from the on-board monocular

camera intelligently. We call the ability to identify unreliable visual inputs ahead of time

‘introspection’ [9].

4

1.4. THESIS CONTRIBUTIONS

Figure 1.2: The northern goshawk is capable of flying through dense
forests at high speeds. The level of maneuverability exhibited by
these birds represents the peak performance quadrotors can hope to
achieve.

1.4.1 Recovery Maneuver Selection

Our first approach towards dealing with these unreliable visual inputs (which we call

‘failures’) looks at associating a failure image at test time with the best recovery maneuver.

The goal is to execute a maneuver which provides the greatest chance of putting us in

a position such that the visual input is once again reliable so that normal flight can

resume. We present a framework of data collection and associated training of classifiers

that help us establish these relations between a failure and the best recovery maneuver.

The set of recovery maneuvers is created by leveraging domain knowledge available to

us.

1.4.2 Continuous Case Extension - Corrective Maneuvers

Previously, we only execute recovery maneuvers if and when the visual input is unre-

liable. Since the set of these maneuvers is predetermined, there may not be any good

maneuver for a failed image. Even though it might be mission-critical to execute a recov-

ery maneuver at this moment, there is no good way for us to make a decision about which

one to execute. We extend the previous approach by removing the threshold on images

that have failed or not when making these decisions. By considering all incoming images

in conjunction with a measure of their quality, we now want to execute the corrective
maneuver with the greatest chance of improving quality significantly.

5

CHAPTER 1. INTRODUCTION

1.4.3 Outline

This thesis is organised as follows. Chapter 2 introduces our quadrotor and on-board

monocular visual navigation system. We introduce our sub-systems of monocular depth

estimation and introspection. We briefly refer to past work done as part of the BIRD

project during this discussion. In Chapter 3, we talk about our data collection, training,

and inference protocols for selection of recovery maneuvers. Chapter 4 presents details

about the extension to corrective maneuvers and the use of cost-sensitive classifiers for

this purpose. Finally, in Chapter 5 we conclude the work done in this thesis and discuss

alternate formulations of the problem this thesis explores, along with future research

directions.

6

C
H

A
P

T
E

R

2
VISION-BASED AUTONOMOUS FLIGHT

Contents
2.1 System Overview . 8

2.2 Monocular Depth Estimation . 8

2.3 Introspection . 9

2.4 Planning and Control . 11

2.5 Past Work in BIRD . 11

2.6 Summary . 12

The challenge of autonomous flight for MAVs in dense, cluttered environments lies

in the fact that there are payload and power constraints which limit the number

and type of sensors that can be put on the platform, and also the flight time and

speed. As a result, the specific configuration of the MAV needs to be carefully designed,

with the necessary sensors, batteries, and computational power on-board so that the

desired missions have the greatest chance of success. In this chapter, we give details

about the quadrotor platform that we used for this thesis, along with details about some

of the sub-systems we use in our perception, planning and control pipelines.

7

CHAPTER 2. VISION-BASED AUTONOMOUS FLIGHT

2.1 System Overview

The research platform used for this thesis is a quadrotor customised for the purpose

of flying through dense forests. We have assembled together a number of commercially

available parts on the platform. As an overview, the quadrotor contains two monocular

cameras and a single-beam lidar sensor. There is also a single-board computer and

autopilot on-board.

2.1.1 Quadrotor Platform

The primary hardware platform is a modified 3DR ArduCopter with an on-board Odroid

XU3 quad-core ARM processor which runs Ubuntu 12.04 and ROS Fuerte (the same as

our groundstation). A Microstrain 3DM-GX3-25 IMU is used to help correct the drift

and noise of the ArduPilot integrated IMU. There are two monocular cameras on the

quadrotor. A downward facing PlayStation Eye camera (320×240 at 30 fps) is used for

real-time pose estimation. The image stream from a front-facing high-dynamic range

PointGrey Chameleon camera (640×480 at 15 fps) is relayed to the base station, where

the perception and planning modules use it for monocular navigation. These modules

use a semi-dense 3D reconstruction of the scene to select the optimal trajectory which is

then sent back to and executed by the quadrotor. The lidar sensor is used to recover the

true scale (altitude) of the environment. The quadrotor platform used for this work is

shown in Figure 2.1.

2.2 Monocular Depth Estimation

For monocular depth estimation, we use a semi-dense visual odometry approach fol-

lowing the method of Engel et al. [14]. Pixels with large disparity between frames are

selected along with suitable reference frames. Line searches are used to refine the dis-

parity estimates which are converted to an inverse depth map (inverse depth is directly

proportional to the disparity). This is continuously propogated to future image frames

to calculate their relative poses. In order to recover the true scale of the images being

observed, measurements of the distance travelled by the quadrotor according to visual

odometry are corrected using the same measurements from a single beam metric lidar

sensor.

8

2.3. INTROSPECTION

Figure 2.1: Our customised quadrotor hardware platform. The
front-facing monocular camera and on-board computer (in the plastic
case on top) are easily visible.

2.3 Introspection

The idea of introspection is central to the field of psychology [24]. The analogy in robotics

is the model representation of a robot’s current operational state1. This idea was first

introduced by Morris et al. [30] who used it in an information-theoretic setting to

improve a robot’s decision making capability when it became uncertain of its operational

state. Recently, the idea of introspection has been adopted for perception systems in

terms of quantifying the predictive variance of classification and detection algorithms

[21, 20, 39]. The idea there is to use algorithms cognizant of the fact that the assumption

of independent and identically distributed (iid) data is usually not valid for real-world

robotic systems. These algorithms can then be utilized in an active learning framework

[39] to further improve predictor accuracy. The notion of introspection that we utilize

in this work is best described by Daftry et al. [9] who obtain a confidence estimate by

analyzing the input to the system. The key difference is that this approach makes it

possible to quantify the reliability of input data which directly affects the quality of the

prediction made.

A deep spatio-temporal convolutional network based on [37] (with individual archi-

tectures similar to AlexNet [25]) is used to generate a good feature vector representation

1Operational state is a high-level representation of the configuration of various sub-processes in a
robotic system. It should not be confused with an instance from the state space model of a robot. More
details can be found in [30].

9

CHAPTER 2. VISION-BASED AUTONOMOUS FLIGHT

Figure 2.2: Our customised quadrotor hardware platform. The
front-facing monocular camera and on-board computer (in the plastic
case on top) are easily visible.

of the images from the front-facing camera stream. The CNN architecture is shown in

Figure 2.2. These features are passed through a learned linear SVM which predicts a

failure score y ∈ [0,1] as output, where a higher score for an image indicates greater

probability of failure of the perception system for that particular input image [9]. A

failure of the perception system occurs when it is unable to reliably label the trajectories

in our library as collision-free or collision-prone. The feature vectors xi ∈Rd from the fc7

layer of the spatial CNN for each image i are later used during training and selection of

recovery/corrective maneuvers described in Chapters 3 and 4.

The two-stream CNN is trained against ground-truth from a stereo camera. The base

task we are trying to accomplish is to first generate good (monocular) depth images, and

then use this to calculate the probability of collision along each of the trajectories in our

library. If this probability is above a certain threshold, the trajectory is deemed to be

collision-prone, otherwise it is collision-free. We use a stereo-camera as ground truth

since that is the best depth image we can hope to achieve in an outdoor environment,

without a prior map. Given both a stereo depth image and our estimated monocular

depth image, ideally we want the exact same labelling of trajectories. If the discrepancy

between the two sets of labellings is too high, we deem that particular monocular image

to be a failure. The two-stream CNN is then trained against a 0−1 loss to predict the

correct label - failure (predict 1) or not (predict 0). For more details on training the

introspection CNN, please refer to [8].

10

2.4. PLANNING AND CONTROL

(a)

(b)

Figure 2.3: (a) Library of 78 trajectories optimally sub-sampled for
maximal coverage area from a larger set of 2401 trajectories. (b)
Receding horizon control using a ground-truth depth image from
a stereo camera. Trajectories in red have the greatest chance of
collision, while the thick light-green trajectory is chosen as the best
in this case.

2.4 Planning and Control

We use a receding horizon planner that selects the current best trajectory out of a library

of 78 optimally sampled motion primitives [19]. The best trajectory is selected such that

a weighted sum of certain parameters is minimized. These include probability of collision

along the trajectory, deviation from current heading, and deviation from desired/goal

heading. These costs are calculated using the depth map obtained from the perception

module. Once a trajectory has been selected, it is sent over to the quadrotor that uses a

pure-pursuit PD controller to track the trajectories. Our library of 78 trajectories and a

snapshot of the planner running on ground-truth stereo images is shown in Figure 2.3.

2.5 Past Work in BIRD

The problem of monocular vision based autonomous flight in a dense forest has been

approached in many different ways in this research project. The first approach was to

11

CHAPTER 2. VISION-BASED AUTONOMOUS FLIGHT

learn a policy that would be able to mimic a human expert pilot to the best possible

degree, given the data the learning procedure had access to. This method uses the DAgger

algorithm [34], which is a no-regret imitation learning algorithm that helps us learn a

purely reactive obstacle (tree) avoidance policy. By repeatedly querying the expert, we

are able to regress to left-right velocity commands from image features. However, this

method presented some interesting human-robot interaction challenges when querying

the expert during training.

Next, we looked at two different methods of non-linear regression for depth prediction.

The first relies on budgeted selection of image features for training the regressor and us-

ing the system uncertainty to combine multiple depth predictions for better performance

[11]. It used a least-squares based non-linear regression [1]. We also experimented with

getting rid of the budgeted feature selection and least-squares non-linear regression, and

replacing it with a convolutional neural network (CNN) trained against ground-truth

stereo depth images with a square-loss between the final fc8 layer and raw stereo depth

image [8].

Eventually, we switched to a semi-dense visual odometry based method for monocular

depth estimation [10]. This was augmented with a CNN for introspection [9] which is

discussed in detail in Section 2.3 above.

2.6 Summary

Our research platform for this thesis and some of the prior work done in this project is

described in this chapter. Of note is the fact that we primarily rely on two monocular

cameras - a front-facing camera for depth prediction, and a downward-facing camera for

pose estimation. We also introduce the introspection pipeline that runs in parallel to the

depth prediction and trajectory selection pipeline. Finally, we briefly go over the past

research that has been done in this project to illustrate the systematic progress we have

made towards achieving safe and robust flight in dense outdoor environments.

12

C
H

A
P

T
E

R

3
RECOVERY MANEUVER SELECTION

Contents
3.1 Recovery Maneuvers . 13

3.2 Data Collection . 15

3.3 Predictor Training . 17

3.4 Predictor Inference . 18

3.5 Experiments & Results . 19

3.6 Summary . 22

This chapter contains details about the entire pipeline involved in learning failure

responses. This pipeline is shown schematically in Figure 3.1. The following

sections describe the process of selecting candidate recovery maneuvers, training

data collection, predictor training and inference, and finally experimental results.

3.1 Recovery Maneuvers

Maneuvers that will lead to recovery in a variety of failure cases must be chosen us-

ing domain knowledge before training the classifier. Maneuvers should be simple, in-

terfere minimally with the robot’s high-level task, not expose the robot to additional

dangers while perception is unreliable, and provide a reasonable likelihood of end-

ing the unfavorable conditions that led to perception failure. The approach outlined

13

CHAPTER 3. RECOVERY MANEUVER SELECTION

Figure 3.1: Block diagram for learning failure responses.

in this thesis requires at least two candidate maneuvers in order to make a deci-

sion about which one is better, but no other assumption is made pertaining to these

maneuvers. The maneuvers themselves simply act as class labels for the predictors.

For the work presented in this thesis, the four recovery maneuvers considered were

Y = {translate right, translate left, rotate right, rotate left} as shown in Figure 3.2. Dur-

ing execution, these maneuvers are sandwiched between hover commands sent to the

quadrotor. Both translate trajectories cause the quadrotor to translate in the respective

directions for 5s with a linear velocity of ±0.1m/s as desired. Similarly, the other two

trajectories cause the quadrotor to yaw by ±45° with a constant angular velocity over 5s.

These values for trajectory execution was hand-selected by us for smooth execution.

14

3.2. DATA COLLECTION

Figure 3.2: We use four simple failure response maneuvers in this
work: translate right, translate left, rotate right, and rotate left. These
were selected by considering their ease of execution and resulting
impact on the camera scene.

Rotational trajectories are lower risk since the quadrotor does not move in a way

that might cause it to collide with an obstacle, but they may hinder the high-level task

of flying for as long as possible in a desired direction. Translational trajectories are

comparatively higher risk since they may lead to collision if obstacles are present in the

quadrotor’s immediate vicinity (to the left or right). However, they are helpful in that

they do not interfere much with the high-level task, and provide valuable information to

help resolve camera parallax.

3.2 Data Collection

Data collection is a unique challenge when considering the case of failure classification.

Ideally, once a perception failure is predicted, all candidate maneuvers would be executed

and recovery status would be recorded for each maneuver. Not only would this approach

to training data collection be tedious, it could be practically impossible. Often perception

failures are specific to exact conditions such as lighting, position and motion and are

thus not easily replicated. After executing one recovery maneuver and returning to the

approximate pose of the failure, the perception system may no longer be failing. Even if

the system still is failing, this new failure will not be quite the same as the one used to

test the previous maneuver. For this reason, we propose an alternative data collection

method.

To collect training data, when a failure is predicted, only one of the candidate ma-

neuvers is executed and the recovery status at the end of the maneuver is recorded. If

the perception system recovers from the failure at any time during the maneuver, that

maneuver is considered to have recovered. The completed data set then contains the

images (xi) along the maneuver (yi), and an indicator of whether that maneuver resulted

15

CHAPTER 3. RECOVERY MANEUVER SELECTION

Figure 3.3: Satellite view of training and testing area (highlited in
red) in Schenley Park near Carnegie Mellon University, Pittsburgh,
PA, USA.

in recovery {0,1}. Training data was collected by holding the quadrotor as we walked

through a forest environment, executing one of the four maneuvers every time a failure

was predicted. This handflying approach drastically reduced the time required to collect

data, and was overall logistically easier to carry out than actual flight. The data was

collected by handflying for around 20km in this way in the area shown in Figure 3.3.

Figure 3.4 shows example images from our actual flight tests that triggered perception

failures, which were then resolved by one of the recovery maneuvers.

Even with 20km of handflying, only 825 failures were encountered: an insufficient

number for training a robust predictor y(x) : x ∈ Rd → Y that maps from a high-

dimensional feature space Rd to the set of candidate maneuvers Y 1. To solve this

issue, multiple images from each maneuver were used in the training set. As soon as

the system was alerted of a perception failure, all image frames were recorded until

either the system recovered or the maneuver ended. Our camera transmits images at 15

1For fc7 feature vectors, d = 4096.

16

3.3. PREDICTOR TRAINING

(a) (b) (c) (d)

Figure 3.4: Examples of images that failed during flight. Failures
were resolved by (a) rotating left, (b) rotating right, (c) translating
left, and (d) translating right. Intuitive causes of failure include
direct glare from sunlight (c,d), strong shadows (b, d), open area (b,c),
large obstacles preventing adequate parallax (a), and overexposure
(a,c,b). Our algorithm used thousands of images like these to learn
which trajectories are most likely to recover from perception failures.

frames per second which results in around 50−100 frames per maneuver executed. Using

every recorded frame would result in unhelpful redundant data [12]. To avoid repeats,

redundant images were removed greedily, using the L1 distance norm between fc7

feature vectors x from the deep introspection framework as a similarity metric. Consider

the sequence of image feature vectors obtained during a maneuver, X = {x1,x2, · · · ,xT }

where T is the end of the maneuver. Starting with X ′ = {x1 ∈ X }, we build X ′ ⊂ X such

that

(3.1) X ′ = X ′∪ {x : |x−x′|≥ ε,x ∈ X ,x′ ∈ X ′},until
|X ′|
|X | = 0.1

where ε is a user-defined threshold set to satisfy our choice of |X ′|
|X | = 0.1. Distance

in feature space was used because similarity between these deep features matters to

the predictor, not pixel-wise similarity between the images themselves. L1 distance in

particular was used because it provides more accurate results in high dimensional space

than traditional Euclidean distance [2].

3.3 Predictor Training

X= {X ′
1, · · · , X ′

i, · · · , X ′
N } is the entire data set of images collected. The subscript i refers

to the ith maneuver that was executed. For the data that we collected, N = 825. This

data set is split into two sets X+ and X−. X+ contains all images from trajectories that

17

CHAPTER 3. RECOVERY MANEUVER SELECTION

Maneuver Recovered Failed

Translate Right 745 631
Translate Left 738 530
Rotate Right 1280 863
Rotate Left 1234 1518

Total 7539

Table 3.1: Number of images for each class in the training set.

were successful in recovering from the perception failure, while X− contains all images

from trajectories that were unsuccessful in recovering from the perception failure. The

exact numbers of images from each class y ∈Y in each of these two sets is shown in Table

3.1. Two SVMs are trained independently on these datasets X+ and X−, to predict the

associated recovery maneuvers y ∈Y which are used as the class labels.

We use the fc7 feature vectors from the CNN independently for predicting potential

failures, and selecting a recovery maneuver. The combination of CNN features and

SVMs is a popular architecture for supervised learning tasks [38]. Using SVMs in

combination with CNN features for these two independent tasks is a simple and more

comprehensible model architecture (than an end-to-end neural network approach) that

is able to outperform the existing state-of-the-art for autonomous flight in dense forests.

To give a sense of how many recovery maneuvers were executed during data collection

to obtain the dataset in Table 3.1, please refer to Table 3.2 below. During data collection,

if at any point during the execution of a maneuver, the image was not in failure anymore

(according to the CNN), we stopped execution, and marked that maneuver as ‘recovered’.

As a result, all frames up until the frame that recovered were added to the Recovered
data corresponding to that maneuver. Thus, while the two columns in Table 3.1 have

roughly equal numbers for each maneuver, during collection, more maneuvers Recovered
than not (since only a subset of frames from these are considered for addition into the

dataset, as opposed to all frames for maneuvers that did not recover). This is shown in

Table 3.2.

3.4 Predictor Inference

At test time, when a query image that triggered a perception failure is obtained, Platt

scaling [31] is used to convert the arbitrary confidence scores from the two SVMs to two

18

3.5. EXPERIMENTS & RESULTS

Maneuver Recoveries during Collection Failures during Collection

Translate Right 99 51
Translate Left 83 34
Rotate Right 78 40
Rotate Left 118 85

Table 3.2: Each recovery maneuver was executed several times
during data collection - all recovered more times than not during
this process.

different probabilities.

We represent p+(y|x) as the probability that the recovery maneuver leading to

successful recovery from the perception failure is y ∈Y . Similarly, p−(y|x) represents the

probability that the recovery maneuver leading to failure is y. Note that
∑

y p+(y|x)= 1

and
∑

y p−(y|x)= 1, but in general p+(yi|x) 6= (1− p−(yi|x)) ∀ i.

We use the ratio of the two probabilities obtained from the two SVMs as the scoring

function s(x) ∈ R for each such query feature vector x ∈ Rd. The query image is then

classified as belonging to the class with the greatest score.

(3.2) ŷ= argmax
y∈Y

s(x)= argmax
y∈Y

p+(y|x)
p−(y|x)

The predicted recovery maneuver ŷ is then executed. ŷ represents the recovery

maneuver maximally likely to end in recovery and minimally likely to stay in failure.

Ties are broken by looking at the p+(y|x) values, with higher values getting preference.

If there is still a tie between a translational and rotational maneuver after this, the

rotational maneuver is selected due to the translational maneuvers being comparatively

more dangerous to execute as discussed in Section 3.1.

3.5 Experiments & Results

3.5.1 Handflying

We first validated our approach by handflying the quadrotor for over 3km in similar

fashion to that used in data collection. Instead of executing only one maneuver during

a test run however, we ran the failure response predictor as we walked. The predicted

19

CHAPTER 3. RECOVERY MANEUVER SELECTION

(a) (b)

Figure 3.5: Results obtained from the experiments. The graphs
show the percentage of failures that ended up recovery for each
maneuver during (a) Handflight, and (b) Actual flight.

recovery maneuver was executed whenever a perception failure was encountered. Follow-

ing this approach, 69% of failures ended in recovery, as compared to 45% when following

a random maneuver as shown in Figure 3.5. The numerical breakdown of these failures

and recoveries is given in Table 3.3.

3.5.2 Actual Flight

Finally, we carried out around 6km of tests in actual flight to test the robustness of this

framework. Once a perception failure is predicted, the quadrotor stops following the

previous trajectory it had received, and switches control over to the recovery maneuver to

be executed. Upon completion of the maneuver, it resumes trajectory tracking. If however

it did not recover, the maneuver is considered to have failed, and the quadrotor was

commanded to land in-place. We do not consider this an intervention of autonomous

flight. In our case, flight is intervened by a human if the quadrotor flew dangerously

close to an obstacle (tree, branch, bush etc.).

When the recovery maneuver was predicted by our novel framework, the quadrotor

recovered from failure 66% of the time. In contrast, it only recovered 43% of the time if

the maneuver was chosen randomly. Figure 3.5 shows these results. In addition, with

this framework in place, the quadrotor flew for over 1,200m on average through a dense,

cluttered forest (roughly 2 trees per 4m×4m area) at 1.5m/s before requiring human

intervention. Again, the numerical breakdown of these failures and recoveries is given

20

3.6. SUMMARY

Figure 3.6: Average flight distance without intervention in a dense,
cluttered forest. The bars correspond to different algorithms from
robotics literature - a purely reactive approach [34], a deliberative
approach based on semi-dense monocular depth estimation [10], the
same deliberative approach with introspection [9], and our frame-
work which includes failure responses.

in Table 3.3.

Figure 3.6 is a graph comparing various approaches that have been used for monocu-

lar flight through comparably dense forests. The average distance flown by the quadrotor

is over 6x greater than a previous reactive controller based approach [34], and over

2x greater than a naive deliberative approach without introspection [10]. It is hard to

compare our results with other existing research on autonomous outdoor flight [18, 4, 26].

The average distance flown without intervention, average flight speed, and density of

obstacles in the environment are three metrics that are crucial for a fair comparison of

attempts at autonomous outdoor flight. These works however either report only a subset

of these metrics, or none of them.

3.6 Summary

This chapter presents both a comprehensive argument for learning failure responses, and

a simple framework which achieves that goal. For collecting training data, we propose to

21

CHAPTER 3. RECOVERY MANEUVER SELECTION

E
xp

er
im

en
t

T
ra

ns
la

te
R

ig
ht

T
ra

ns
la

te
L

ef
t

R
ot

at
e

R
ig

ht
R

ot
at

e
L

ef
t

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

H
an

d
(R

an
do

m
)

14
15

48
.2

8
10

13
43

.4
8

8
14

36
.3

6
11

9
55

.0
0

H
an

d
(S

V
M

)
20

10
66

.6
7

19
5

79
.1

7
9

6
60

.0
0

12
5

70
.5

9

F
lig

ht
(R

an
do

m
)

20
23

46
.5

1
18

24
42

.8
6

10
21

47
.6

2
15

23
39

.4
7

F
lig

ht
(S

V
M

)
31

14
68

.8
9

29
14

67
.4

4
22

16
57

.8
9

28
12

70
.0

0

Ta
bl

e
3.

3:
B

re
ak

do
w

n
of

fa
ilu

re
s

en
co

un
te

re
d

du
ri

ng
ex

pe
ri

m
en

ts
.

T
he

‘H
an

d’
ex

pe
ri

m
en

ts
re

fe
r

to
on

es
w

it
h

ha
nd

fli
gh

t
of

th
e

qu
ad

ro
-

to
r,

w
he

re
as

th
e

‘F
lig

ht
’e

xp
er

im
en

ts
re

fe
r

to
on

es
w

it
h

ac
tu

al
fli

gh
t

of
th

e
qu

ad
ro

to
r.

22

3.6. SUMMARY

handfly our quadrotor through our training and testing environment to save time and

effort. Our experiments show that the data collected in this way does well at the intended

task in-flight as well. We train two different SVMs to predict maneuvers most and least

likely to lead to recovery, and use a combination of these scores to select a maneuver

to execute at test time. This method achieves over 1,200m of uninterrupted flight on

average, which is a 10−20% improvement over the previous state-of-the-art developed

as part of the same project. The older approach also utilized the deep introspection CNN,

but did not have learned models of failure responses.

23

C
H

A
P

T
E

R

4
LEARNING CORRECTIVE MANEUVERS

Contents
4.1 Data Collection . 26

4.2 Classifier Training . 28

4.3 Experiments & Results . 31

4.4 Summary . 33

In Chapter 3, we dealt with the problem of executing recovery maneuvers for images

that are deemed to be causes of failure for our base monocular depth estimation

algorithm. Some drawbacks of the approach we presented there are that,

a) it might be too late to execute a recovery maneuver after an image is deemed to

have failed.

b) it is hard to collect data only for failure points because as the base perception

algorithm improves, failure points are few and far between.

We address both these issues with the work in this chapter. We now seek to execute

one of the same set of maneuvers as a corrective maneuver. The change in terminology is

because of the fact that we no longer consider only failed images. We consider all images,

and if there is a corrective maneuver that can help us improve overall performance, we

will execute it. This way, we hope to avoid failures ahead of time, and not leave maneuver

execution to the last second.

25

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

4.1 Data Collection

We follow the same data collection protocol as before, with details given in Section 3.2.

Handflying the quadrotor lets us collect more data faster than we could if we collected

data in flight. Moreover, since we are no longer restricted to executing maneuvers for

images that have failed, we can execute many more maneuvers per handflight. During

this process of handflying, we would walk a few steps with the quadrotor, stop, execute

a maneuver, and continue until the next stop. The only consideration was that there

should be a significant distance between two stops so that the images looked considerably

different from each other.

The dataset for this work contains several frames along each maneuver executed,

along with a measure of their quality (this will be discussed in Section 4.1.1). We do

not categorise datapoints as being good/beneficial or bad/detrimental or neutral during

this data collection process. As discussed previously in the introduction, eventually

during test time, we want to execute maneuvers if and when there exists one that is

good/beneficial in the sense that it will likely increase the quality of the image.

4.1.1 Quality Value (λ) of Images

For this work, we need a measure of the quality of monocular image frames. The output

of introspection CNN described in Section 2.3 is ŷ ∈ [0,1], where 1 corresponds to a failure
image and 0 corresponds to a good image. For convenience, we use 1− ŷ as a quality

measure for the frames in our dataset. We refer to this as the quality value λ. One thing

to note here is that while the camera transmits frames at 15 fps, the CNN only outputs

the λ at 2 Hz. Thus, the frames that go into our dataset are the ones that correspond to

each output of the CNN. While this means we leave out a lot of frames (13 frames per

second to be precise), it also means that we cannot go through the dataset augmentation

step from Section 3.2.

During data collection, we handflew the quadrotor for about 20km, the same amount

as the work in Chapter 3. However, in contrast to the 825 failures we encountered,

we were able to execute and collect data from over 2,400 corrective maneuvers. The

maneuvers themselves are the same as before - rotate left/right and translate left/right.

Our final dataset contains just over 17,000 images and their λ values. Table 4.1 shows the

number of frames collected during the execution of each of the four different maneuvers.

While analyzing this data, we found as expected that the λ values for each maneuver

nicely fit a normal distribution. These values are provided in the last column of the

26

4.1. DATA COLLECTION

Maneuver Images λ Distribution

Translate Right 4,539 0.681±0.030
Translate Left 4,038 0.672±0.031
Rotate Right 4,110 0.676±0.033
Rotate Left 4,347 0.674±0.030

Total 17,034

Table 4.1: Number of images for each maneuver in the training set,
along with the mean and standard deviation values for λ.

table above. This normal distribution of λ represents the fact that most images that

the monocular camera might come across in flight are good enough in quality, with only

a few that are better or worse. This was expected because we are well aware of the

causes of failure of our base vision algorithm. Consequently, we are also aware of perfect

images for our algorithm. From the numerous flights we have conducted, it was to be

expected that our (image, λ) data would obey a normal distribution. Figure 4.1 shows

histograms of λ and ∆λ for the datasets for all maneuvers, along with the fitted normal

distributions (in red). We will discuss what we mean by (and how we use) ∆λ later in

Section 4.2, but in short, ∆λ for a frame in the dataset is the difference between the

quality values λ of the final frame in a maneuver and that particular frame.

4.1.2 Dataset Augmentation

While we cannot use the dataset augmentation trick from Section 3.2, we can still

increase the size of our dataset in a much more sensible and logical way. Since each

image in our dataset now has an associated λ, and because all our corrective maneuvers

are mirrored by another (rotate/translate left ↔ rotate/translate right), we can reverse

the sequence of images and λ from a left dataset, and add it to the corresponding right
dataset and vice versa. This way, each classifier is trained on 8,000+ images instead

of 4,000+ according to Table 4.1. Figure 4.2 shows an example of this augmentation.

For every right (left) maneuver we execute, we are able to add a maneuver to the

corresponding left (right) dataset. In addition, the figure provides a sense of our normally

distributed datasets. Most of the maneuvers we execute result in λ trajectories like the

one in Figure 4.2(a). There are some that significantly increase or decrease the λ of the

images, as shown in Figure 4.2(b), and we want to put more emphasis on these during

classifier training. This is because at test time, we would like to avoid the ambiguity of a

27

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

neither good or bad prediction from the classifiers.

4.2 Classifier Training

Since we treat our problem as a classification problem, we obviously need to divide our

dataset into classes. As we alluded to before, we divide the dataset into three classes. Let

φ represent a corrective maneuver. For every image in the φ dataset, φ could be

• Good/beneficial: this is the case if executing φ from that image increase λ signifi-

cantly.

• Bad/detrimental: this is the case if executing φ from that image decreased λ

significantly.

• Neutral: if φ does not cause a significant change in the λ after execution, we say its

effect on the image is neutral.

The change in λ of an image is considered with respect to the last image frame and

λ we receive during the execution of a corrective maneuver. Let x respresent the fc7

feature vector of images in our dataset. Data collected from the execution of a single

maneuver is φ= {(x1,λ1), (x2,λ2), · · · , (xi,λi), · · · , (xN ,λN)}. Then we define,

(4.1) ∆λi =λN −λi,∀i ≤ N

The normal distributions of ∆λ for all maneuvers can be seen in Figure 4.1(b). For

the purpose of training naive SVM classifiers, an image xi is assigned a class yi on the

following basis,

(4.2) yi =


1, ∆λ

φ

i >µ∆λ,φ+ σ∆λ,φ

2

0, µ∆λ,φ− σ∆λ,φ

2 ≤∆λφi ≤µ∆λ,φ+ σ∆λ,φ

2

−1, ∆λ
φ

i <µ∆λ,φ− σ∆λ,φ

2

where µ∆λ,φ and σ∆λ,φ are the mean and standard deviation respectively of ∆λ for

maneuver φ. yi = 1 means φ is good for xi; yi = −1 means φ is bad for xi; and yi = 0

means φ is neutral for xi. Obviously, ∆λN =λN −λN = 0, which is not helpful. This means

that the final frame in a trajectory cannot be assigned a class on the basis of its ∆λ value.

Instead, for the final frame, we follow the same logic as in Equation 4.2, except we use

the λ of the frame and the λ statistics of the dataset for maneuver φ.

28

4.2. CLASSIFIER TRAINING

Maneuver Images
Good Neutral Bad

Translate Right 2,299 3,961 2,317
Translate Left 2,325 3,945 2,307
Rotate Right 2,276 4,009 2,178
Rotate Left 2,243 4,028 2,186

Table 4.2: Number of images of each class in the dataset for correc-
tive maneuvers.

A naive SVM classifier is then trained on the (xi, yi) datapoints thus created for

each maneuver φ. In our case, we ultimately end up training 4 different classifiers - one

for each of the 4 maneuvers. At test time, we can use these classifiers to predict if a

particular corrective maneuver will be good or not for an image frame. We execute a

corrective maneuver at random from the set of maneuvers predicted to be good (which

could easily be the empty set as well).

4.2.1 Cost-Sensitive Classification

The downside of the naive classifiers stems from the fact that our data is normally

distributed. This means that when we split it into the three different classes according to

Equation 4.2, there is a severe class imbalance problem, seen in Table 4.2. Around 50% of

the images for each maneuver are labelled as neutral. This results in the predictions at

test time being dominated by this class, which is unhelpful to us when we want to make

a decision to execute a maneuver. There end up being a number of instances of frames

that would likely benefit from a corrective maneuver, but our classifiers miss these by

classifying all maneuvers as neutral. In literature, two common ways to deal with the

class imbalance problem are to oversample or undersample the minority or dominant

class(es); or introduce some form of regularisation in the training procedure [27]. Cost-

sensitive classification effectively acts as a regularisation scheme that decreases the

number of false negatives at the expense of allowing more false positives. What this

means in our scheme is that we might execute unnecessary maneuvers from time to time,

but we will be less likely to miss the opportunity to execute a maneuver when necessary.

Consider a two-class classification problem. The extension to more than two classes

is trivial. You can train multiple one-vs-one or one-vs-rest classifiers and make a

prediction by aggregating their individual predictions [22]. We use the one-vs-one

29

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

classification technique for this work. Given training datapoints xi ∈ Rd, i = 1, · · · , N
and their corresponding class labels yi ∈ {−1,1}N , the naive SVM solves the following

optimisation problem:

(4.3)

min
w,b,ζ

1
2

wTw+C
N∑

i=1
ζi

subject to yi

(
wTκ(xi)+b

)
≥ 1−ζi,

ζi ≥ 0, i = 1, · · ·N

with sign
(
wTκ(xi)+b

)
as the decision function. κ(xi) represents some feature transfor-

mation of the input data. In our case, input data is an image, and the result of κ(xi) is

the fc7 feature vector we use. In Equation 4.3, C acts as a regularization parameter and

ζi are slack variables. These help account for overlapping classes during the optimisa-

tion procedure. What the equation does not capture is the class imbalance problem we

referred to above.

By incorporating datapoint-dependent costs in the optimisation procedure instead

of a common C variable, we can account for the ‘importance’ of a particular datapoint,

and solve a cost-sensitive optimisation problem to train our SVMs [43, 28]. In our case,

importance is related to the ∆λ of a datapoint. The cost-sensitive optimisation problem

we solve instead of Equation 4.3 is:

(4.4)

min
w,b,ζ

1
2

wTw+C

(
N∑

i=1
siζi

)
subject to yi

(
wTκ(xi)+b

)
≥ 1−ζi,

ζi ≥ 0, i = 1, · · ·N

where si =max

(
4

(
∆λi −µ∆λ,φ

σ∆λ,φ

)2

,1

)

As before, since ∆λN = 0 for the last frame along an executed maneuver, the datapoint-

dependent costs for these frames is calculated using their λ and corresponding λ statis-

tics.

The effect of such a cost-sensitive classification can be seen in Figure 4.3. We create a

toy problem to imitate some of the characteristics of the actual problem we are trying

to solve. We generate points in R2 uniformly at random, and assign a colour value to

them on a continuous gradient from blue (0) to red (1). This is analogous to our feature

vectors in Rd having a λ (or ∆λ) associated with them. The task is to classify points as

blue or red or neither (analogous to maneuvers being good or bad or neutral). We split

30

4.3. EXPERIMENTS & RESULTS

the input data in the same way as Equation 4.2, using the colour values and its statistics.

The plot on the left shows the input data. The plot in the middle shows a naive SVM

classification and decision boundaries. Note that neutral points are coloured as almost

white. The datapoint-dependent weights are assigned using Equation 4.4, and the plot on

the right shows the cost-sensitive SVM classification and decision boundaries. Obviously,

the effect of the datapoint-dependent weighting is to enlarge the boundaries surrounding

more blue or more red datapoints. But the important takeaway is that cost-sensitive

classification is able to find the ‘more blue’ or ‘more red’ regions in a dataset where the

different classes overlap considerably. While cost-sensitive classification may not offer a

big advantage for less data as in Figure 4.3(a), it does a much better job with more data

which can be seen in Figure 4.3(b).

The SVMs in this toy example are trained using all the same parameters as in our

actual experiments. The only difference is the dimensionality of the input data, the

distribution it is drawn from, and the distribution of the colour values.

4.3 Experiments & Results

As before, we evaluated our approach by first handflying the quadrotor and then in

actual flight. We conducted both sets of experiments over roughly 4km. During one run

of an experiment, we query all four SVMs corresponding to the four maneuvers for every

image frame that we get from the front-facing monocular camera. For both naive and

cost-sensitive cases, if any of the SVMs make a good prediction, we execute a maneuver.

If there is only one SVM that makes a good prediction, we execute that maneuver. If

there are multiple, we pick one at random and execute it. ∆λ1 indicates the effectiveness

of the maneuver. The detailed results from these experiments are given in Table 4.3. We

did not run any experiments where we executed a maneuver at random since that makes

less sense in this paradigm. Should we execute a maneuver at random for every frame?

Should we execute a maneuver at random every k frames/seconds/meters? Executing

maneuvers at random is not a fair alternative in this case to using SVM predictions to

make a decision.

The graphs below display the results from Table 4.3. Figure 4.4 shows the ∆λ error

bar plots we observed after executing a corrective maneuver in our experiments. Note

that only one ‘Rotate Left’ maneuver was executed while using the naive 3-class SVMs

during handflight. It can be seen that the variance for cost-sensitive classifiers tends to

decrease as more maneuvers are executed. In comparison, the naive SVM predictions

31

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

E
xp

er
im

en
t

T
ra

ns
la

te
R

ig
ht

T
ra

ns
la

te
L

ef
t

R
ot

at
e

R
ig

ht
R

ot
at

e
L

ef
t

#
E

xe
cu

te
d

∆
λ

#
E

xe
cu

te
d

∆
λ

#
E

xe
cu

te
d

∆
λ

#
E

xe
cu

te
d

∆
λ

H
an

d
(N

ai
ve

SV
M

)
7

−0
.0

02
3
±0

.0
31

9
8

0.
00

18
±0

.0
26

2
9

0.
00

10
±0

.0
18

5
1

−0
.0

00
7

H
an

d
(C

-S
SV

M
)

20
0.

01
16

±0
.0

02
3

19
0.

00
89

±0
.0

09
7

15
−0

.0
00

2
±0

.0
27

7
12

0.
02

50
±0

.0
08

6

F
lig

ht
(N

ai
ve

SV
M

)
10

0.
00

15
±0

.0
27

1
8

0.
00

02
±0

.0
23

8
5

0.
00

10
±0

.0
30

4
14

0.
01

87
±0

.0
10

6
F

lig
ht

(C
-S

SV
M

)
9

0.
01

02
±0

.0
11

3
11

0.
01

58
±0

.0
09

4
23

0.
02

69
±0

.0
14

5
16

0.
01

91
±0

.0
03

7

E
xp

er
im

en
t

T
ra

ns
la

te
R

ig
ht

T
ra

ns
la

te
L

ef
t

#
Fa

il
ed

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

#
Fa

il
ed

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

H
an

d
(N

ai
ve

SV
M

)
2

1
1

50
.0

0
5

3
2

60
.0

0
H

an
d

(C
-S

SV
M

)
6

5
1

83
.3

3
2

2
0

10
0.

00

F
lig

ht
(N

ai
ve

SV
M

)
9

2
7

22
.2

2
3

1
2

33
.3

3
F

lig
ht

(C
-S

SV
M

)
1

0
1

0.
00

4
3

1
75

.0
0

E
xp

er
im

en
t

R
ot

at
e

R
ig

ht
R

ot
at

e
L

ef
t

#
Fa

il
ed

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

#
Fa

il
ed

R
ec

ov
er

ed
N

ot
R

ec
ov

er
ed

%
R

ec
ov

er
y

H
an

d
(N

ai
ve

SV
M

)
3

2
1

66
.6

7
0

N
/A

N
/A

N
/A

H
an

d
(C

-S
SV

M
)

8
5

3
62

.5
0

4
3

1
75

.0
0

F
lig

ht
(N

ai
ve

SV
M

)
4

0
4

0.
00

7
4

3
57

.1
4

F
lig

ht
(C

-S
SV

M
)

7
6

1
85

.7
1

13
10

3
76

.9
2

Ta
bl

e
4.

3:
T

he
‘H

an
d’

ex
pe

ri
m

en
ts

re
fe

r
to

on
es

w
it

h
ha

nd
fli

gh
t

of
th

e
qu

ad
ro

to
r,

w
he

re
as

th
e

‘F
li

gh
t’

ex
pe

ri
m

en
ts

re
fe

r
to

on
es

w
it

h
ac

tu
al

fli
gh

t
of

th
e

qu
ad

ro
to

r.
‘C

-S
SV

M
’i

s
th

e
co

st
-s

en
si

ti
ve

SV
M

.
T

he
ta

bl
e

at
th

e
to

p
sh

ow
s

th
e

ef
fe

ct
on

im
ag

e
λ

du
e

to
co

rr
ec

ti
ve

m
an

eu
ve

r
ex

ec
ut

io
n.

T
he

bo
tt

om
tw

o
ta

bl
es

lo
ok

at
th

e
pe

rf
or

m
an

ce
of

th
es

e
co

nt
in

uo
us

ca
se

cl
as

si
fie

rs
in

th
e

di
sc

re
te

ca
se

pa
ra

di
gm

.

32

4.4. SUMMARY

vary much more in terms of the effectiveness of the maneuver.

There are a few conclusions we can draw from these experiments. The first is that

using a cost-sensitive SVM is much more effective in terms of improving image quality

on average, even though the variance between the naive and cost-sensitive SVMs is

comparable. Secondly, naive SVMs predict far fewer good maneuvers during handflight or

actual flight. This was to be expected since these classifiers are dominated by the neutral
class from our training data. In terms of maneuvers executed for images that would have

been flagged as failures under the paradigm from Chapter 3, cost-sensitive classifiers

experience significantly less failure images than the SVMs from the previous approach.

We believe that this is because these classifiers achieve the intended goal of avoiding

failures pre-emptively. Even for the failure images that they do predict maneuvers for,

the recovery percentages are comparable to those from Table 3.3. All things considered,

cost-sensitive SVM classifiers retain the positive aspect of the approach from the previous

chapter in that they are able to recover from failures, but in addition, they improve

the image quality after executing a corrective maneuver, and also experience far fewer

failure cases.

In terms of average distance flown without human intervention, these classifiers

outperform the ones from Chapter 3 by 7%. Over roughly 4km (this distance is measured

using a combination of the quadrotor’s on-board visual odometry algorithm and lidar

sensor), the previous approach flew for 1,232m on average without intervention. By

using cost-sensitive classifiers, we flew for 1,318m on average without intervention.

It is interesting to note that we only flew for 948m on average without intervention

when we relied on the naive SVM classifiers from this chapter. Again, the reason for

such comparatively poor performance is the fact that the naive SVMs predict neutral
maneuvers most of the time, which is akin to flying without introspection. Figure 4.5

shows these numbers in a bar graph. It is an extension of Figure 3.6 with additional bars

for the two approaches discussed in this chapter for comparison.

4.4 Summary

This chapter presents a continuous case extension of Chapter 3. The concept of failed

images is done away with in favour of a quality measure of input images. By doing

this, we can reason in terms of trying to improve image quality by executing corrective

maneuvers. We collect data by handflying the quadrotor and executing a corrective

maneuver uniformly at random. We observe that this data is normally distributed in

33

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

terms of the maneuver’s effect on the image quality. Some make it worse, some improve it,

but most do not affect it much. This leads us to a cost-sensitive classification framework

where we use datapoint-dependent costs to put more emphasis on images for which a

particular maneuver was significantly good or bad. We evaluate these classifiers against

naive ones that use equal costs for all datapoints in handflight and actual flight.

34

(a)

(b)

Figure 4.1: (a) λ histograms for all maneuvers. The fitted normal
distribution curve is in red. (b) ∆λ histograms for all maneuvers.
The fitted normal distribution curve is in red.

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

(a)

(b)

Figure 4.2: We are able to increase the size of our dataset by flipping
a right (left) maneuver, and adding it to the corresponding left (right)
dataset. While most trajectories (a) do not change the λ much, we
put more emphasis on (b) the ones that do.

36

4.4. SUMMARY

(a)

(b)

Figure 4.3: While trying to classify points in R2 as blue or red, where
the classes overlap, cost-sensitive classification (a) does not offer a
big advantage with less data. However, with more data available,
(b) it can grow out regions of both classes by using the importance
weights of each datapoint.

37

CHAPTER 4. LEARNING CORRECTIVE MANEUVERS

(a) (b)

Figure 4.4: The graphs show the mean ± one standard deviation of
∆λ of executed corrective maneuvers that was observed during (a)
Handflight, and (b) Actual flight.

Figure 4.5: The majority of this graph is the same as Figure 3.6. In
addition, we plot the bars for average distance flown without inter-
vention using the naive 3-class and cost-sensitive SVM approaches
discussed in this chapter.

38

C
H

A
P

T
E

R

5
CONCLUSIONS & FUTURE WORK

Contents
5.1 Conclusions . 39

5.2 Future Work . 40

In this thesis, we explore the problem of learning to execute corrective maneuvers

to improve the quality of the input given to a base vision algorithm. In our case, the

base algorithm is monocular depth estimation using semi-dense visual odometry.

We use an introspective measure to get a quality measure for images that this algo-

rithm uses. Given these two pieces, to try to learn to associate a small set of corrective

maneuvers with images for which they are likely to increase quality.

5.1 Conclusions

There is no doubt that introspection is an important tool for mobile robots especially.

There is a lot of value in being able to quantify the quality of inputs supplied to other

pieces of a mobile robot’s pipeline downstream. It can help deal with compounding errors

at an early stage. However, it is important to come up with a good performance metric

while training such a system since this is what determines the efficacy of a trained

introspection system. The performance metric is an engineering decision that needs to

be made depending on the robot and task at hand.

39

CHAPTER 5. CONCLUSIONS & FUTURE WORK

In a similar vein, the set of recovery or corrective maneuvers is also an engineering

decision where the mobile robot and domain of operation play an important role. The

approaches discussed in this thesis are able to increase flight performance by 10−20%. It

might be possible to obtain greater performance boosts by improving the base algorithms.

But because these algorithms can never be perfect, it is extremely important to give

robots the capabilities explored in this thesis. We present a comprehensive argument

for learning failure responses and also avoiding failures altogether. In addition, we

provide a framework which achieves that goal starting from data collection to training to

implementation on a real platform.

Cost-sensitive classifiers are a popular way to deal with problems with an inherent

class imbalance. By tuning the datapoint-dependent costs to suit our dataset, we can

find regions in fc7 feature space corresponding to beneficial maneuvers. Without using

cost-sensitive classifiers, it is impossible to do so since the data that we observe is heavily

dominated by maneuvers that have a negligible effect on image quality. This approach

should be applicable to any mobile robot platform equipped with an introspection pipeline.

Using these two, we can collect data that increases or decreases a quality measure over

the inputs used by the robot. From this dataset, we can weight samples according to their

effect on this quality measure and train cost-sensitive classifiers to learn the desired

behaviour. For example, a mobile robot running a monocular SLAM algorithm could

use its localisation uncertainty as a quality measure. Feature-rich images are likely to

decrease this uncertainty, and we can thus enable the robot to execute maneuvers that

make it move towards regions it expects to be feature-rich.

5.2 Future Work

The work that we explore in this thesis makes no use of past information, i.e. the

history of images received by the camera prior to executing a maneuver. By incorporating

temporal information, or using a local map of the surrounding region, a robot could

make better decisions. For instance, in the current framework, if a robot just moves past

a tree to its left and faces a need to execute a maneuver, there is nothing stopping it

from executing the translate left maneuver and crashing right back into the tree. This

problem has been a part of our monocular navigation research for a long time [34].

Similarly, during training of the classifiers in this thesis, we treate the separate

frames along one executed maneuver as separate datapoints. If we can learn a time-

series dynamical model [41] of the system in λ trajectory space, we could try and predict

40

5.2. FUTURE WORK

the evolution of the system state for each candidate maneuver and use these multi-step

predictions to make a more informed decision. This is related to the idea of training

regressors instead of classifiers. The goal here would be to predict future λ trajectories

given the current image, similar to those shown in Figure 4.2.

Following the discussion in Section 3.2, we can only execute one maneuver per image

and observe the result of executing that maneuver only. This means that in our dataset,

we really only have information about a single maneuver for an image. Such a situation

is captured better as a contextual bandit problem. The context in our case would be

the image, with the different maneuvers being the bandits. We then seek to learn

reward function estimates for each maneuver online. There are two major problems with

such an approach. Online learning algorithms are under-explored in high-dimensional

spaces (our images are 640×480 and the fc7 feature vectors have 4,096 elements).

In addition, online learning algorithms can be slow to converge. This would mean we

would essentially be executing maneuvers at random in the beginning which can be

hazardous since we operate specifically with unreliable inputs. However, using such an

online learning framework along might allow us to dynamically edit the set of recovery

maneuvers (add/delete) based on the estimates of the mean rewards of maneuvers and

perhaps even the uncertainty around these estimates.

41

BIBLIOGRAPHY

[1] A. AGARWAL, S. M. KAKADE, N. KARAMPATZIAKIS, L. SONG, AND G. VALIANT,

Least squares revisited: Scalable approaches for multi-class prediction, in Pro-

ceedings of the 31st International Conference on International Conference on

Machine Learning - Volume 32, ICML’14, JMLR.org, 2014, pp. II–541–II–549.

Section 2.5.

[2] C. C. AGGARWAL, A. HINNEBURG, AND D. A. KEIM, On the surprising behavior
of distance metrics in high dimensional space, in International Conference on

Database Theory, Springer, 2001, pp. 420–434.

Section 3.2.

[3] S. ARORA, S. CHOUDHURY, D. ALTHOFF, AND S. SCHERER, Emergency maneuver
library-ensuring safe navigation in partially known environments, in Robotics

and Automation (ICRA), 2015 IEEE International Conference on, IEEE, 2015,

pp. 6431–6438.

Section 1.2.

[4] A. J. BARRY AND R. TEDRAKE, Pushbroom stereo for high-speed navigation in
cluttered environments, in Robotics and Automation (ICRA), 2015 IEEE Interna-

tional Conference on, IEEE, 2015, pp. 3046–3052.

Section 3.5.2.

[5] M. BLÖSCH, S. WEISS, D. SCARAMUZZA, AND R. SIEGWART, Vision based mav nav-
igation in unknown and unstructured environments, in Robotics and automation

(ICRA), 2010 IEEE international conference on, IEEE, 2010, pp. 21–28.

Section 1.1.

[6] S. CHOUDHURY, S. SCHERER, AND J. A. BAGNELL, Theoretical limits of speed and
resolution for kinodynamic planning in a poisson forest, in Robotics: Science and

Systems XI, Sapienza University of Rome, Rome, Italy, July 13-17, 2015, 2015.

Section 1.2.

43

BIBLIOGRAPHY

[7] A. COATES, P. ABBEEL, AND A. Y. NG, Learning for control from multiple demon-
strations, in Proceedings of the 25th international conference on Machine learn-

ing, ACM, 2008, pp. 144–151.

Section 1.1.

[8] S. DAFTRY, Towards scalable visual navigation of micro aerial vehicles, Master’s

thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, April

2016.

Sections 2.3 and 2.5.

[9] S. DAFTRY, S. ZENG, J. A. BAGNELL, AND M. HEBERT, Introspective perception:
Learning to predict failures in vision systems, in Intelligent Robots and Systems

(IROS), 2016 IEEE/RSJ International Conference on, IEEE, 2016, pp. 1743–

1750.

Sections 1.4, 2.3, 2.5, and 3.6.

[10] S. DAFTRY, S. ZENG, A. KHAN, D. DEY, N. MELIK-BARKHUDAROV, J. A. BAGNELL,

AND M. HEBERT, Robust monocular flight in cluttered outdoor environments,

arXiv preprint arXiv:1604.04779, (2016).

Sections 2.5, 3.6, and 3.5.2.

[11] D. DEY, K. S. SHANKAR, S. ZENG, R. MEHTA, M. T. AGCAYAZI, C. ERIKSEN,

S. DAFTRY, M. HEBERT, AND J. A. BAGNELL, Vision and learning for deliber-
ative monocular cluttered flight, in Field and Service Robotics, Springer, 2016,

pp. 391–409.

Section 2.5.

[12] P. DOMINGOS, A few useful things to know about machine learning, Commun. ACM,

55 (2012), pp. 78–87.

Section 3.2.

[13] J. DONG, E. NELSON, V. INDELMAN, N. MICHAEL, AND F. DELLAERT, Distributed
real-time cooperative localization and mapping using an uncertainty-aware
expectation maximization approach, in Robotics and Automation (ICRA), 2015

IEEE International Conference on, IEEE, 2015, pp. 5807–5814.

Section 1.1.

[14] J. ENGEL, T. SCHÖPS, AND D. CREMERS, Lsd-slam: Large-scale direct monocular
slam, in European Conference on Computer Vision, Springer, 2014, pp. 834–849.

Section 2.2.

44

BIBLIOGRAPHY

[15] J. ENGEL, J. STURM, AND D. CREMERS, Camera-based navigation of a low-cost
quadrocopter, in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ Inter-

national Conference on, IEEE, 2012, pp. 2815–2821.

Section 1.1.

[16] M. FAESSLER, F. FONTANA, C. FORSTER, E. MUEGGLER, M. PIZZOLI, AND

D. SCARAMUZZA, Autonomous, vision-based flight and live dense 3d mapping
with a quadrotor micro aerial vehicle, Journal of Field Robotics, 33 (2016),

pp. 431–450.

Section 1.1.

[17] F. FRAUNDORFER, L. HENG, D. HONEGGER, G. H. LEE, L. MEIER, P. TANSKANEN,

AND M. POLLEFEYS, Vision-based autonomous mapping and exploration using
a quadrotor mav, in Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ

International Conference on, IEEE, 2012, pp. 4557–4564.

Section 1.1.

[18] A. GIUSTI, J. GUZZI, D. C. CIREŞAN, F. L. HE, J. P. RODRÍGUEZ, F. FONTANA,

M. FAESSLER, C. FORSTER, J. SCHMIDHUBER, G. D. CARO, D. SCARAMUZZA,

AND L. M. GAMBARDELLA, A machine learning approach to visual perception of
forest trails for mobile robots, IEEE Robotics and Automation Letters, 1 (2016),

pp. 661–667.

Sections 1.1 and 3.5.2.

[19] C. GREEN AND A. KELLY , Optimal sampling in the space of paths: Preliminary
results, Tech. Rep. CMU-RI-TR-06-51, Robotics Institute, Pittsburgh, PA, Novem-

ber 2006.

Section 2.4.

[20] H. GRIMMETT, R. PAUL, R. TRIEBEL, AND I. POSNER, Knowing when we don’t
know: Introspective classification for mission-critical decision making, in 2013

IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2013,

pp. 4531–4538.

Section 2.3.

[21] H. GRIMMETT, R. TRIEBEL, R. PAUL, AND I. POSNER, Introspective classification
for robot perception, The International Journal of Robotics Research, (2015),

p. 0278364915587924.

Section 2.3.

45

BIBLIOGRAPHY

[22] C.-W. HSU AND C.-J. LIN, A comparison of methods for multiclass support vector
machines, IEEE transactions on Neural Networks, 13 (2002), pp. 415–425.

Section 4.2.1.

[23] S. KARAMAN AND E. FRAZZOLI, High-speed flight in an ergodic forest, CoRR,

abs/1202.0253 (2012).

Section 1.2.

[24] H. KOHUT, Introspection, empathy, and psychoanalysis: An examination of the
relationship between mode of observation and theory., Journal of the American

Psychoanalytic Association, (1959).

Section 2.3.

[25] A. KRIZHEVSKY, I. SUTSKEVER, AND G. E. HINTON, Imagenet classification with
deep convolutional neural networks, in Advances in neural information process-

ing systems, 2012, pp. 1097–1105.

Section 2.3.

[26] S. LIU, M. WATTERSON, K. MOHTA, K. SUN, S. BHATTACHARYA, C. J. TAYLOR,

AND V. KUMAR, Planning dynamically feasible trajectories for quadrotors using
safe flight corridors in 3-d complex environments, IEEE Robotics and Automation

Letters, PP (2017), pp. 1–1.

Section 3.5.2.

[27] R. LONGADGE AND S. DONGRE, Class imbalance problem in data mining review,

arXiv preprint arXiv:1305.1707, (2013).

Section 4.2.1.

[28] H. MASNADI-SHIRAZI, N. VASCONCELOS, AND A. IRANMEHR, Cost-sensitive sup-
port vector machines, CoRR, abs/1212.0975 (2012).

Section 4.2.1.

[29] D. MELLINGER AND V. KUMAR, Minimum snap trajectory generation and control
for quadrotors, in Robotics and Automation (ICRA), 2011 IEEE International

Conference on, IEEE, 2011, pp. 2520–2525.

Section 1.1.

[30] A. C. MORRIS, Robotic introspection for exploration and mapping of subterranean
environments, ProQuest, 2007.

Sections 2.3 and 1.

46

BIBLIOGRAPHY

[31] J. C. PLATT, Probabilistic outputs for support vector machines and comparisons to
regularized likelihood methods, in Advances in Large Margin Classifiers, MIT

Press, 1999, pp. 61–74.

Section 3.4.

[32] J. A. PREISS, W. HÖNIG, G. S. SUKHATME, AND N. AYANIAN, Crazyswarm: A large
nano-quadcopter swarm, in Proc. IEEE International Conference on Robotics

and Automation, 2017.

Section 1.1.

[33] C. RICHTER, A. BRY, AND N. ROY, Polynomial Trajectory Planning for Aggres-
sive Quadrotor Flight in Dense Indoor Environments, Springer International

Publishing, Cham, 2016, pp. 649–666.

Section 1.1.

[34] S. ROSS, N. MELIK-BARKHUDAROV, K. S. SHANKAR, A. WENDEL, D. DEY, J. A.

BAGNELL, AND M. HEBERT, Learning monocular reactive uav control in clut-
tered natural environments, in Robotics and Automation (ICRA), 2013 IEEE

International Conference on, IEEE, 2013, pp. 1765–1772.

Sections 1.1, 2.5, 3.6, 3.5.2, and 5.2.

[35] S. SCHERER, S. SINGH, L. CHAMBERLAIN, AND S. SARIPALLI, Flying fast and
low among obstacles, in Robotics and Automation, 2007 IEEE International

Conference on, IEEE, 2007, pp. 2023–2029.

Section 1.1.

[36] T. SCHOUWENAARS, J. HOW, AND E. FERON, Receding horizon path planning with
implicit safety guarantees, in American Control Conference, 2004. Proceedings

of the 2004, vol. 6, IEEE, 2004, pp. 5576–5581.

Section 1.2.

[37] K. SIMONYAN AND A. ZISSERMAN, Two-stream convolutional networks for action
recognition in videos, in Advances in neural information processing systems,

2014, pp. 568–576.

Section 2.3.

[38] Y. TANG, Deep learning using support vector machines, CoRR, abs/1306.0239 (2013).

Section 3.3.

47

BIBLIOGRAPHY

[39] R. TRIEBEL, H. GRIMMETT, R. PAUL, AND I. POSNER, Driven learning for driv-
ing: How introspection improves semantic mapping, in The 16th International

Symposium of Robotics Research (ISRR), Springer, 2016, pp. 449–465.

Section 2.3.

[40] M. TURPIN, K. MOHTA, N. MICHAEL, AND V. KUMAR, Goal assignment and trajec-
tory planning for large teams of interchangeable robots, Autonomous Robots, 37

(2014), pp. 401–415.

Section 1.1.

[41] A. VENKATRAMAN, M. HEBERT, AND J. A. BAGNELL, Improving multi-step predic-
tion of learned time series models., in AAAI, 2015, pp. 3024–3030.

Section 5.2.

[42] M. WATTERSON AND V. KUMAR, Safe receding horizon control for aggressive mav
flight with limited range sensing, in Intelligent Robots and Systems (IROS),

2015 IEEE/RSJ International Conference on, IEEE, 2015, pp. 3235–3240.

Section 1.2.

[43] B. ZADROZNY AND C. ELKAN, Learning and making decisions when costs and
probabilities are both unknown, in Proceedings of the seventh ACM SIGKDD

international conference on Knowledge discovery and data mining, ACM, 2001,

pp. 204–213.

Section 4.2.1.

48

	List of Tables
	List of Figures
	Introduction
	Autonomous Flight
	Safe and Robust Systems
	BIRD
	Thesis Contributions
	Recovery Maneuver Selection
	Continuous Case Extension - Corrective Maneuvers
	Outline

	Vision-Based Autonomous Flight
	System Overview
	Quadrotor Platform

	Monocular Depth Estimation
	Introspection
	Planning and Control
	Past Work in BIRD
	Summary

	Recovery Maneuver Selection
	Recovery Maneuvers
	Data Collection
	Predictor Training
	Predictor Inference
	Experiments & Results
	Handflying
	Actual Flight

	Summary

	Learning Corrective Maneuvers
	Data Collection
	Quality Value () of Images
	Dataset Augmentation

	Classifier Training
	Cost-Sensitive Classification

	Experiments & Results
	Summary

	Conclusions & Future Work
	Conclusions
	Future Work

	Bibliography

