
Learning Contextual Actions for Heuristic Search-Based Motion
Planning

Dhruv Mauria Saxena1 and Maxim Likhachev1

Abstract— Heuristic search-based motion planning can be
computationally costly in large state and action spaces. In this
work we explore the use of generative models to learn contextual
actions for successor generation in heuristic search. We focus
on cases where the robot operates in similar environments,
i.e. environments drawn from some underlying distribution.
Intuitively, in such cases the robot is bound to observe similar
looking local regions of the environment over the course of
its operation. We evaluate the use of a conditional variational
autoencoder (CVAE) to learn a distribution over contextual
actions given this local map and a goal location. These contex-
tual actions are used to help the search make faster progress
towards the goal, and avoid or get out of local minima along
the way. We show simulation results for kinematic planning
problems in a variety of 2D environments for motion planning
for a point-robot and a planar arm with up to 5 degrees-of-
freedom. Our approach outperforms traditional search-based
planning algorithms in terms of computational cost (number of
expansions) while maintaining bounds on suboptimality.

I. INTRODUCTION

There are many tasks for robots that require solving
motion planning problems in similar environments1. Robots
are routinely and repeatedly used on the floor in ware-
houses [1], for pick-and-place tasks in factories [2], [3],
for navigation in agricultural fields [4], and for navigation
among dense crowds in the case of service robots [5]. In
such environments, we can reduce the computational cost of
future planning queries by leveraging prior experience. This
work presents a simple and straightforward initial approach
to incorporate the use of generative models within a heuristic
search framework. Specifically, we focus on reducing plan-
ning time as measured by the number of state expansions in
the context of heuristic search, while maintaining guarantees
on bounded solution suboptimality.

In this work, we explore the use of contextual actions for
this purpose. We define these as actions ~a that are condi-
tioned on local information for a given robot state. Figure 1
contains an illustrative example that shows the utility of such
actions. We consider the problem of learning the distribution
p(~a|φ(x), ~xgoal) using a Conditional Variational Autoencoder
(CVAE) [6], where ~a is the contextual action, x is the
current state, φ(x) is a feature encoding of the current state
which includes information about the local environment,
and ~xgoal is a vector towards the desired goal state from
the current state. Since we consider similar environments
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1We say environments are similar if they are drawn from some underlying
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Fig. 1: Contextual actions, represented by arrows, can help
a heuristic search algorithm both avoid local minima (from
orange state) and escape local minima (from the blue state).

in which we repeatedly solve planning problems between
different start and goal states, we know the robot will visit
parts of the state-space with local environments similar to
those encountered previously. This insight helps us model
the distribution p(~a|φ(x), ~xgoal), given prior experience data.

For any new planning problem the robot is given, we
can sample from the learned distribution during the search
process to take actions that make quicker progress towards
the goal. As such, our approach benefits from being able to
continuously learn and refine its estimate of the distribution.
In our approach, we rely on a corpus of prior experience
data in the form of (x, x′, xgoal) tuples, where x and x′ are
states along a bounded suboptimal path to goal xgoal

2. In
this preliminary work, we consider the simple case where
contextual actions ~a =

−→
xx′ are vectors in the state space.

Furthermore, the approach in this paper requires computation
of the feature encoding of a state φ(x) at every expan-
sion during the heuristic search. This is computationally
expensive and can increase overall planning clock times
even though it significantly decreases the number of states
expanded. We believe that this work nicely incorporates the
use of learned models in heuristic search and motivates
further research to resolve such simplifying assumptions and
shortcomings.

II. PRELIMINARIES

A. Problem Formulation

In this paper we focus on kinematic path planning prob-
lems in 2D workspaces X ∼ D drawn from a distribution
D as a proof-of-concept for using generative models in

2In this notation we assume that x′ is further along the path (i.e. closer
to xgoal) than x.



conjunction with heuristic search. Our goal is to reduce the
number of states expanded by the heuristic search algorithm,
while providing guaranteed bounds on solution suboptimal-
ity. The effect of modeling the distribution p(~a|φ(x), ~xgoal)
from experience is that actions ~a result in longer edges in
our search graph that cut across free space. In the case where
such edges are invalid or infeasible, the search can always
progress by expanding states generated using the usual action
space of the robot. We rely on the new edges to reduce state
expansions, and the original action space to maintain bounds
on solution suboptimality.

B. Heuristic Search-Based Motion Planning

As test domains, we consider point-robots and planar arms
with up to 5 degrees-of-freedom operating in 2D workspaces
X = Xfree∪Xobs, where Xfree is the free space that the robot
can move in, and Xobs is the space occupied by obstacles. A
planning problem is defined by the tuple (X , xstart, xgoal,A),
which includes a start configuration xstart, a desired goal
configuration xgoal, and the action space A. For every state
x ∈ Xfree that the search algorithm considers, it evaluates all
possible successors x′ ∈ {~a(x) | ~a ∈ A}. The output of ~a(x)
includes all the states the robot enters while taking action ~a
from state x. However, by x′ we specifically refer to the final
state in these sequences (we use x~a to refer to intermediate
states in Algorithm 1.). Each edge along the final path found
by the search is an action ~a ∈ A.

C. Conditional Variational Autoencoders

The core of our work relies on using a conditional
variational autoencoder (CVAE) to learn a distribution over
contextual actions for the search algorithm. CVAEs are latent
variable models [6], [7] that factor an unknown posterior
distribution over a latent variable of fixed dimension. We
model the distribution p(~a|φ(x), ~xgoal) with a CVAE using
information from previous planning problems that the robot
has solved as this lets us reason about edges (actions) which
are beneficial in any given state more succintly. For discrete
search algorithms like the ones we use for path planning,
identifying such beneficial edges and determining which ones
to add to the search graph can be computationally expensive.
By learning a generative model in continuous space, we can
sample a sparse set of edges to add to our search graph.

III. APPROACH

For both the point-robot and planar arm, we use 200×200
2D workspaces X from an existing open-source dataset [8].
Our approach proceeds in two distinct phases. First, we solve
several planning problems in these workspaces in order to
create our training dataset. This dataset is used to train our
CVAE in order to learn the distribution p(~a|φ(x), ~xgoal). In
the second phase, the CVAE is used as part of the heuristic-
search algorithm for previously unseen planning problems.

A. Dataset Collection and Training

We solve M planning problems each in N 2D workspaces
using Weighted A* search [9]. A planning problem is defined

(a) (b)

Fig. 2: Features φ(x) for a (a) point-robot, and (b) planar arm
with 3 degrees-of-freedom. The simulated laser readings (in
red) are used as the feature vector. For a planar arm, rays
are cast from all joints and the readings are concatenated to
form the feature vector.

as the tuple (X , xstart, xgoal,A) where X ∼ D, xstart, xgoal ∈
Xfree, and A is the action space. For both the point-robot
and the planar arm, for a state x, we use Euclidean distance
h(x) = ω · ‖x − xgoal‖ in the configuration space as the
heuristic, inflated by a factor of ω = 5. The solved paths
are post-processed by shortcutting [10]. For each state in the
shortened path, we compute a feature representation φ(x)
comprised of 100 simulated laser readings in the workspace
X . Examples of φ(x) for the point-robot and planar arm (3
degrees-of-freedom) are shown in Figure 2. Given a state x,
we compute the contextual action ~a =

−→
xx′ as the vector to the

next state along the shortened path x′. Additionally, we also
compute the vector to the goal state ~xgoal. Thus we convert
all raw tuples (x, x′, xgoal) from the NM solved planning
problems to datapoints (φ(x),~a, ~xgoal) which are appended
to our dataset Φ. The CVAE is trained to minimise the well-
known evidence lower bound for the posterior distribution
p(~a|φ(x), ~xgoal) given this dataset Φ [7]. By conditioning the
posterior on ~xgoal, our goal is to predict contextual actions
likely to lead to the specified goal state xgoal. Alternatively,
for our point-robot experiments, we also consider training
our CVAE to model the posterior p(~a|φ(x)) in an attempt
to predict contextual actions likely to lead to any goal in
the workspace X . Our results in Section IV show that both
these models help us reduce the number of state expansions
in heuristic search.

B. Contextual Actions for Heuristic Search

Contextual actions can be easily incorporated into a
generic search-based motion planning framework. We only
modify the EXPAND function for these algorithms. In ad-
dition to generating successor states from the regular action
space A of the robot, we also generate successors, if feasible,
by sampling actions from the posterior learned by the CVAE.
This process is described in Algorithm 1. Lines 7- 12 sample
k contextual actions from the posterior distribution modeled
by the CVAE, evaluate whether these actions are feasible in
X , and if so, add the final state x′ to the search graph as a



Algorithm 1 State Expansion with Contextual Actions
1: procedure EXPAND(x, k)
2: O ← O \ {x} . O is the search frontier
3: for x′ ∈ {~a(x) | ~a ∈ A} do
4: if ~a(x) is collision-free in X then
5: . True if x~a ∈ Xfree∀x~a ∈ ~a(x)
6: O ← O ∪ {x′}
7: for i ∈ 1, · · · , k do
8: Sample a ∼ p(~a|φ(x), ~xgoal)
9: if ~a(x) is collision-free in X then

10: x′ ← a(x)
11: if x′ /∈ O then
12: O ← O ∪ {x′}

successor. We ensure that a sampled contextual action results
in a successor state that lies on the discrete lattice used by
our underlying heuristic search algorithm, by snapping x′ to
the closest lattice point. The additional step in Line 11 checks
whether a newly computed x′ has already been added to the
set O, which represents the search frontier, during the current
call to EXPAND.

Theoretical Analysis: Our Weighted A* search graph
consists of two types of edges: those that correspond to an
action from the original action space A which we represent
as eA, and those that correspond to a contextual action
generated by the CVAE, which we represent as eC . Since
we use Weighted A* as the backbone search algorithm, we
preserve guarantees on completeness and suboptimality with
respect to the original graph (without learned contextual
actions), while using learned contextual actions during the
search to reduce state expansions.

Theorem 1 (Completeness). Heuristic search-based motion
planning with learned contextual actions is complete, i.e. it
will find a solution if one exists.

Proof (sketch). Weighted A* without contextual actions is
complete [11]. Since we only add edges eC to the search
graph, any solution that might be found by Weighted A*
without contextual actions can be found by Weighted A*
with contextual actions.

Theorem 2 (Suboptimality). Weighted A* with learned con-
textual actions using an inflation factor ω ≥ 1 is ω-optimal,
i.e. the cost of any solution π returned by the algorithm
is no worse than ω times the cost of the optimal solution,
c(π) ≤ ω · c(π∗) where c(·) is the edge cost function3.

Proof (sketch). Weighted A* without contextual actions is
ω-optimal [11]. A feasible edge eC connects two states x
and x′. Since this edge is feasible in X , there exists a path
π(x, x′) from x to x′ comprised only of edges eA. Thus,
c(eC) ≤

∑
eA∈π(x,x′) c(eA) as edge costs are non-negative

and additive. This preserves the ω-optimality of Weighted
A* with contextual actions.

(a) (b)

(c) (d)

Fig. 3: Sample instances of the four different workspace
types: (a) Bugtrap Forest, (b) Forest, (c) Gaps and Forest,
(d) Multiple bugtraps.

IV. EXPERIMENTAL RESULTS

We used four types of 2D workspaces X for our point-
robot experiments. Figure 3 shows one example each from
these categories. For planar arm planning, we used environ-
ments from category Figure 3a with random rotations applied
to each workspace. We solved M = 10 paths with randomly
generated start and goal states in N = 800 environments for
each category. To shorten our solution paths, we randomly
sampled 25 pairs of states in the path, and removed all states
in between if those two could be connected via line-of-sight.

Our CVAE architecture and training procedure is im-
plemented using PyTorch v1.1.0 [12]. The encoder has
two hidden layers with (128, 64) neurons respectively, and
ReLU activations. The decoder is a mirror of the encoder.
We use latent variables with two dimensions. The network
architecture was kept constant for all experiments, and we
did not spend any time optimising the architecture. Both the
point-robot and planar arm experiments use 100 simulated
laser readings as φ(x). We did not append ~xgoal to the feature
vector for point-robot planning, but we did for planar arm
planning.

A. Simulation Experiments

We present results for point-robot and planar arm motion
planning with heuristic search. Our experiments show that

3The cost of a path is sum of edge costs of the edges that make up the
path, c(π) =

∑
e∈π c(e)
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Fig. 4: Performance of heuristic search with learned con-
textual actions for different combinations of train and test
workspaces X .

our approach can be used to improve the computational
cost of search-based planning problems across a spectrum
of state spaces from the relatively simple 2D state space
of a point-robot, to much more complicated and unintuitive
configuration spaces for planar arms. For the point-robot
experiments, we first sample 1, 000 contextual actions from
p(~a|φ(x)), and then cluster the resulting successor states x′

into k = 4 clusters using K-means clustering [13]. The
contextual actions a corresponding to these cluster centers
x′ are the ones we use in Line 8 of Algorithm 1. For the
planar-arm, we directly sample k = 1 contextual actions
from (φ(x),~a, ~xgoal) in Line 8 of Algorithm 1.

We present quantitative results by comparing the number
of states expanded by Weighted A* with and without learned
contextual actions across 50 test planning problems, along
with the cost of the solution paths. Specifically, we calculate
the ratios of these numbers with and without learned con-
textual actions. Metric M1 is the ratio of state expansions,
and metric M2 is the ratio of solution costs.

Table I contains experimental results for point-robot plan-
ning while Table II contains results for planar arm planning.
In each table, a separate CVAE was trained for the results in
each row. For point-robot planning, Weighted A* performs
roughly 30-40% fewer state expansions with learned contex-
tual actions than without. In the case of planar arm planning,
contextual actions help save roughly 10-20% state expan-
sions on average. Figure 5 visualises the states expanded by
Weighted A* with and without learned contextual actions for
2D point-robot planning.

In order to test the flexibility of our approach, for point-
robot planning, we also tested CVAEs trained on one
workspace on planning problems in other workspaces from
Figure 3. Furthermore, we also trained a CVAE on samples
from all workspaces as part of this approach (we refer to

Fig. 5: Qualitative results for point-robot planning. State
expansions are shown in blue for Weighted A* without
learned contextual actions (left), and with learned contextual
actions (right). Start state is in green, goal state in red.

the combination of all other workspaces as “all”). Figure 4
presents the results of these experiments. Each cell in the
grid is the ratio of the numbers of states expanded by
Weighted A* with and without learned contextual actions
during the test problems. We see that heuristic search with
learned contextual actions is robust to a mismatch between
the train and test workspaces. We attribute this to the fact that
our learned distribution p(~a|φ(x)) is conditioned on local
features of the state φ(x). If the feature representation is
consistent across workspaces, our model will capture the
inherent dependency of contextual actions on these features.
The local features also help us avoid the pitfall of latent



variable models that usually need samples from the entire
state space to learn a distribution that generalises well [14].

TABLE I: Performance for point-robot motion planning

2D Workspace M1 M2
Bugtrap Forest 0.71± 0.23 1.05± 0.06

Forest 0.61± 0.19 1.05± 0.08
Gaps and Forest 0.68± 0.24 1.04± 0.07

Multiple Bugtraps 0.69± 0.23 1.05± 0.08

TABLE II: Performance for planar arm motion planning

Degrees-of-Freedom M1 M2
2 0.84± 0.55 1.19± 0.09
3 0.93± 0.34 1.05± 0.06
4 0.78± 0.65 1.20± 0.10
5 0.81± 0.48 1.28± 0.12

V. RELATED WORK

A. Heuristic Search

Heuristic search-based motion planning has been used for
a diverse set of applications including aggressive quadrotor
flight [15], humanoid motion planning [16], and multi-agent
pathfinding [17]. Phillips et al. [18] present an approach that
can reuse previously planned paths or expert demonstrations
to build an experience graph. The goal is for the search to
latch on to this graph to find new solutions quickly. The work
of Bhardwaj et al. [8] is perhaps most closely related to ours
within the heuristic search framework. They rely on imitating
an optimal search algorithm to select the next state to be
expanded. The search is then biased towards expanding states
that are more likely to lie on the path to the goal. In our work
however, we do not learn such a selection policy over state
expansions, and use contextual actions to bypass unnecessary
state expansions by augmenting the search graph.

B. Action Priors

Similar to our intuition of using past experiences to learn
a generative model over contextual actions, existing work
has considered simply learning a prior probability of action
utility in any given state. This prior over the action space is
then used to either eliminate actions that will not be useful
for exploration [19], or incentivise the use of actions that
will be useful to achieve a specified goal, given a goal-
conditioned prior distribution over actions [20].

C. Neural Motion Planning

The use of machine learning to aid classical motion plan-
ning has been addressed within the emerging field of neural
motion planning, and has given rise to numerous approaches
to solve the problem. A number of works look at learning
a latent space representation of the robot’s state space or
observation space [21], [22], [23], [24], [25]. The underlying
assumption is that this learned latent space encapsulates all
features important for planning, and makes motion planning

faster as it is a lower-dimensional space by construction.
Since most of these techniques focus on learning global state
distributions, they have most commonly been used within
sampling-based planning algorithms [26].

D. Goal-Conditioned Reinforcement Learning

The seminal work of Kaelbling [27] has spawned research
into using reinforcement learning to learn policies condi-
tioned on the specified goal, in addition to the state of the
robot. One early attempt looked at learning goal-conditioned
value functions [28] where the robot state is augmented with
the goal location at each timestep. A number of different
works have used local controllers or navigation policies
to move between waypoints learned via goal-conditioned
reinforcement learning. These waypoints can be selected by
running a shortest-path graph search over a graph where each
node is a previously visited location in the environment [29],
[30]. A recent method computes a complete trajectory of
waypoints in a recursive manner by iteratively predicting
midpoint subgoals given an intial start and goal location [31].
Subgoals can also be extracted by using successor represen-
tations, which computes the action-value function of a state
in terms of the expected discounted occupancy of states in
the future [32], [33].

VI. CONCLUSION AND DISCUSSION

We present an approach for combining generative mod-
els in the form of Conditional Variational Autoencoders
(CVAEs) with heuristic search-based motion planning algo-
rithms for learning contextual actions, given local feature
information about the state of a robot. Our results show that
our approach helps save 10-40% of computation in terms of
numbers of states expanded. In the work we present here,
computing the feature vector φ(x) for a state x can be time
consuming for our planning algorithms, especially since we
do so for every state expanded as per Algorithm 1. Instead
of querying our learned model for actions at every state
expansion, we would like to look into policies that determine
when to query such a model. In addition, the successors
generated by contextual actions could be used as attractor
states (or waypoints or subgoals) in the search space, and
we might reduce state expansions while avoiding heavy
featurisation costs by biasing the search frontier progression
towards such attractors. We argue that augmenting traditional
heuristic search with learned contextual actions can result
in considerable improvements in performance. While we
restrict ourselves to simple test domains in this preliminary
work, we hope to extend it to more complicated environ-
ments and robots, and apply this approach to kinodynamic
planning problems in the future.
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