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Abstract

We consider the problem of planning for pick-and-place ma-
nipulation in heavy clutter where it might be necessary to in-
teract with and rearrange movable objects via a sequence of
non-prehensile pushes in order to grasp and extract a desired
object. This planning problem is computationally very chal-
lenging for several reasons. First, it requires searching over a
search-space that includes the configuration of movable ob-
jects. Second, it requires prediction of the effects of all the
non-prehensile interactions with objects considered by the
planner, which involves forward simulating a computation-
ally expensive physics-based model. In this paper, we make
an observation that the problem of planning for Manipulation
Among Movable Objects is closely related to the Multi-Agent
Pathfinding problem if we treat all movable objects as actu-
ated robots. Using this insight, we construct a planning algo-
rithm that iterates between (i) solving a multi-agent planning
problem that reasons about the configuration of movable ob-
jects but does not forward simulate a physics model, and (ii)
solving an arm motion planning problem that uses a physics-
based simulator but does not search over the possible config-
urations of movable objects. We present the M4M algorithm,
briefly analyse it from a theoretical perspective, and evaluate
its performance experimentally in both simulations and on a
physical PR2 robot.

Introduction
Manipulation Among Movable Objects (MAMO) (Stilman
et al. 2007) defines a broad class of problems where a robot
must complete a manipulation task in the presence of ob-
structing clutter. In heavily cluttered scenes, there may be
no collision-free trajectory that solves the task. This does
not make the problem unsolvable since MAMO allows rear-
rangement of some objects a priori designated as ‘movable’.
In addition, MAMO associates each object with constraints
on how it can be interacted with – it is undesirable to allow
robots to carelessly push or throw objects around. MAMO
solutions rely on the ability of the robot to rearrange mov-
able clutter such that the original manipulation task can be
completed.

In this paper, we consider pick-and-place tasks where the
robot needs to grasp and extract a desired object from a
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Figure 1: The tomato soup can (outlined in yellow) is the
object-of-interest (OoI) to be retrieved. Access to the OoI is
blocked by the potted meat can and coffee can in front of it.
They must be rearranged out of the way in order to retrieve
the OoI and solve the MAMO problem.

cluttered shelf. In order to retrieve the desired tomato soup
can from the example MAMO problem in Fig. 1, the robot
must first relocate the potted meat and coffee cans placed
in front. Thus the robot is assigned a goal with respect to
the overall task and object-of-interest (OoI), without any ad-
ditional goal specifications for the movable objects except
for satisfying their associated interaction constraints. Solv-
ing such MAMO problems requires answers to three difficult
questions: which objects to move, where to move them, and
how to move them. Thus MAMO solutions must be found
in a composite configuration space that includes the config-
uration of the robot arm and all objects in the scene. The
search for a solution is computationally challenging since
the size of this space grows exponentially with the number
of objects. This search also requires the ability to predict
the effect of robot actions on the configuration of objects,
typically through computationally expensive forward simu-
lations of a rigid-body physics simulator.

Our key insight in this paper exploits a connection be-
tween the MAMO domain and Multi-Agent Pathfinding
(MAPF). We imagine the movable objects in the environ-



ment as actuated agents tasked with avoiding collisions with
each other and our robot arm. A solution to a MAPF prob-
lem with all movable objects as ‘agents’ lets the robot arm
successfully retrieve the OoI while the movable objects rear-
range themselves. Although this solves the MAMO problem
in the abstract space where movable objects are actuated, it
prescribes a rearrangement strategy for the robot to ‘realise’
in the real-world where it is the only actuated entity. Our
M4M algorithm iterates between two aspects of the MAMO
problem – first we find a suitable rearrangement of the scene
without any physics simulations, and then we try to realise
this rearrangement via non-prehensile actions that are simu-
lated for interaction constraint verification.

We use non-prehensile actions for rearrangement since
they allow robots to manipulate objects that may be too big
or too bulky or otherwise ungraspable. In many cases it is
more time- and energy-efficient to push an object off to the
side to reach another one than to grasp it, pick it up, move it
elsewhere, place it down, and release it before going back.
In contrast to prehensile actions, non-prehensile actions do
not require access to known grasp poses for object pickup
or stable configurations for object placement. However, they
do require simulating a physics model to obtain the result of
robot-object interactions which can be time-consuming.

The main contributions of our work in this paper for solv-
ing MAMO planning problems are:

• MAPF abstraction for computing suitable rearrange-
ments for MAMO planning problems, without using a
simulation-based model.

• An efficient algorithm to solve MAMO problems that it-
erates between calls to an MAPF solver (to determine
which objects to move where) and a push planner (to ver-
ify how to move the objects).

• A thorough experimental evaluation of our approach in
simulation and in the real-world on a PR2 robot.

Related Work
Manipulation Among Movable Objects
MAMO generalises Navigation Among Movable Obstacles
(NAMO) where a mobile robot must navigate from start to
goal in a reconfigurable environment (Alami, Laumond, and
Simeon 1994; Wilfong 1991; Stilman and Kuffner 2005). It
is also related to the rearrangement planning problem (Ben-
Shahar and Rivlin 1998; Ota 2009) which explicitly spec-
ifies desired goal configurations for movable objects. Wil-
fong (Wilfong 1991) showed that rearrangement planning is
PSPACE-hard, and MAMO problems are NP-hard to solve.

Many existing MAMO and rearrangement planning
solvers make use of prehensile actions (Stilman et al. 2007;
Krontiris et al. 2014; Krontiris and Bekris 2015; Shome
and Bekris 2021; Wang et al. 2021; Lee et al. 2019). This
simplifies planning since grasped objects behave as rigid
bodies attached to the robot, but assumes access to known
stable configurations of and grasp poses for objects (Stil-
man et al. 2007; Krontiris et al. 2014; Krontiris and Bekris
2015; Shome and Bekris 2021). In some cases a “buffer”
location to place grasped objects is required (Wang et al.

2021; Lee et al. 2019). In particular, (Krontiris et al. 2014)
and (Shome and Bekris 2021) utilise the concept of “peb-
ble graphs” (Kornhauser, Miller, and Spirakis 1984; Solovey
and Halperin 2013) from MAPF literature to find prehen-
sile actions for rearrangement planning. Their formulation
restricts the motion of the movable objects (pebbles) on a
precomputed roadmap of robot arm trajectories via prehen-
sile actions. This limits the possible configurations of ob-
jects they consider since motions are limited to poses from
where they can be grasped and to those where they can be
stably placed. Since we utilise non-prehensile pushes for re-
arrangement and a physics-based simulator for action vali-
dation, our planner explores a richer space of robot-object
and object-object interactions in the 3D workspace.

Allowing non-prehensile interactions with objects typ-
ically requires access to a simulation model to obtain
the result of complex interaction dynamics (van den Berg
et al. 2008; Dogar and Srinivasa 2012; King, Cognetti,
and Srinivasa 2016; Huang et al. 2022; Vieira et al. 2022;
Suhail Saleem and Likhachev 2020). Of these approaches,
only Selective Simulation (Suhail Saleem and Likhachev
2020) considers realistic interactions in the 3D workspace
and is one of our comparative baselines. Others rely on
planar robot-object interactions which fail to account for
object dynamics in SE(3) where they might tilt, lean, or
topple. For another baseline, we adapt the MAMO solver
from (Dogar and Srinivasa 2012) to use our push actions that
lead to 3D robot-object interactions and require a physics
simulator during planning. Originally their work was lim-
ited to interacting with a single object at a time, and used
an analytical motion model in SE(2) to propagate the effect
of the push on the planar configuration of the object being
pushed (tilting and toppling was not considered in (van den
Berg et al. 2008; Dogar and Srinivasa 2012; King, Cognetti,
and Srinivasa 2016; Huang et al. 2022; Vieira et al. 2022)).

Querying physics-based simulators for the result of an
action is much more expensive than collision checking it.
KPIECE (Sucan and Kavraki 2012) is a randomised algo-
rithm for planning with a computationally expensive transi-
tion model (querying a physics-based simulator is an exam-
ple of such a model). KPIECE and RRT (LaValle and James
J. Kuffner 2001) are two other baselines we compare against.
In our own prior work on MAMO planning (Saxena, Saleem,
and Likhachev 2021), we find a collision-free trajectory to a
region near the OoI grasp pose, and simulate goal-directed
non-prehensile actions only within this region. The assump-
tion that such a collision-free trajectory exists is easily vio-
lated in the cluttered MAMO workspaces we instantiate in
our experiments (see Figs. 1, 6, and 7 for example).

Multi-Agent Pathfinding
Multi-agent pathfinding is a family of planning problems
that tries to find paths for a team of robots from a set of start
locations to a set of goal locations. One class of algorithms
that solve MAPF problems assigns priorities to the robots
and solves a sequence of single-agent planning problems
based on this prioritisation (Erdmann and Lozano-Pérez
1987; Silver 2005). This prioritised planning scheme trades
off algorithmic incompleteness and solution suboptimality



for practical efficiency. Turpin et al. (Turpin et al. 2014)
present a resolution complete prioritised MAPF solver for
the specific case when robots are interchangeable.

Conflict-based search (CBS) (Sharon et al. 2012a, 2015)
and M* (Wagner and Choset 2011) are complete and opti-
mal MAPF solvers that use different techniques to provide
strong theoretical guarantees. CBS searches a tree of all pos-
sible solutions in a best-first manner by resolving robot con-
flicts into constraints on robot motion. For two robots that
collide at any instant, either one can be in that location in the
final solution but not both. CBS enumerates all such pos-
sibilities for all potential conflicts until a solution with no
conflict is found. M* resolves robot conflicts by combining
two conflicting robots and treating them as one agent un-
til the conflict between them is resolved. This idea has also
been adopted in the CBS family of algorithms (Sharon et al.
2012b).

Problem Statement
Let XR ⊂ Rq denote the configuration space of a q degrees-
of-freedom robot manipulator R. Let O = {O1, . . . , On}
be the set of objects in the scene, and XOi ≡ SE(3) be the
configuration space of object Oi that includes its 3D posi-
tion and orientation. The search space for a MAMO planning
problem is X = XR × XO1

× · · · × XOn
. We denote mov-

able objects by OM and immovable obstacles by OI such
that O = OM ∪ OI and OM ∩ OI = ∅.

Each object is associated with a set of interaction con-
straints. For example, an “immovable” obstacle (an object
that cannot be interacted with, such as a wall) will contain
a constraint function which is satisfied so long as neither
the robot nor any other object makes contact with it. In our
problems similar functions encode that movable objects can-
not fall off the shelf, tilt too far (beyond 25◦), or move with a
high instantaneous velocity (above 1m s−1). A state x ∈ X
is valid if all constraints for all objects are satisfied at that
state. Let XV be the space of valid states.

A MAMO planning problem can be defined with the tu-
ple P = (X ,A, T , c, xS ,XG). A is the action space of the
robot, T : X × A → X is a deterministic transition func-
tion, c : X × X → R≥0 is a state transition cost function,
xS ∈ XV is the start state, and XG ⊂ X ,XG ∩ XV ̸= ∅
is the set of goal configurations. The start state xs includes
a “home” robot configuration in XR and the initial poses of
the movable objects and immovable obstacles. The goal for
a MAMO planning problem is to find the least-cost valid
path π from start to goal, i.e. a path made up of a se-
quence of valid states. A path π = {x1, . . . , xT } has cost
C(π) =

∑T−1
i=1 c(xi, xi+1). Formally, we can write this as

an optimisation problem:

find π∗ = argmin
π

C(π)

s.t. x ∈ XV , ∀x ∈ π (path of valid states)
x1 = xS , xT ∈ XG (start, goal constraints)
xi+1 = T (xi, ai), ai ∈ A,∀xi, xi+1 ∈ π

(transition dynamics)
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Figure 2: MAMO workspace (left) and its 2D projection la-
belled with movable object IDs. Movable objects are in blue,
immovable obstacles in red, and the object-of-interest to be
retrieved in yellow.

In our work we discretise the action space A for the
robot to include simple motion primitives that independently
change each joint angle by a fixed amount and dynam-
ically generate push actions based on information about
where to move an object. This implies that for transition
xi+1 = T (xi, ai), action ai ∈ A can affect object con-
figurations between xi and xi+1 only if ai is a push action
or the OoI has been grasped. The cost of robot actions c is
proportional to the distance travelled in XR. We assume the
goal set XG is defined in two parts – a grasp pose in SE(3)
for the OoI and a goal pose in SE(3) where it must end up
(while grasped by the robot). Our solution to MAMO prob-
lems P = (X ,A, xS ,XG, T , c) is a sequence of arm tra-
jectories in the robot configuration space XR ⊂ Rq (q = 7
for the PR2 robot) that (i) rearrange movable clutter and (ii)
retrieve the OoI. Fig. 2 shows an example of the MAMO
problems we consider in this paper, along with its 2D pro-
jection. Red objects are immovable obstacles OI , blue ob-
jects are initial movable objects Oinit

M , and the goal for the
robot arm is to extract the yellow OoI from the shelf. There
is no collision-free trajectory for the arm to extract the OoI
from the shelf. Upon rearrangement of some of the mov-
able objects (objects A and B in particular), such a trajectory
may be found. Our algorithm formulates an abstract MAPF
problem to identify which objects need to move (A and B in
Fig. 2), and where they should be moved (shown in Fig. 3).

Classical Multi-Agent Pathfinding
Classical MAPF planning problems seek to find non-
conflicting paths for a set of agents {r1, . . . , rn} on a dis-
crete graph G = (V,E) in discrete time. Each robot ri has a
designated start state si ∈ V and a desired goal state gi ∈ V .
Robot ri has access to an action space Ai, which includes an
action to wait at the current state. An edge (v, v′) ∈ E im-
plies that some action aj ∈ Ai takes robot ri from vertex
v to v′. All actions are assumed to take the same amount of
time such that traversing an edge (v, v′) ∈ E takes one unit
of time. A single-agent solution path for ri is a sequence
of states πi = {v0 = si, . . . , vT = gi} where the sub-
scripts denote time indices. Two single-agent solution paths
πi and πj are conflict-free if robots ri and rj never collide as
they traverse their respective paths. The solution to a MAPF
problem with n robots {r1, . . . , rn} is a set of n mutually
conflict-free paths, i.e. πi and πj must be conflict-free for
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Figure 3: The negative goal region (NGR) V (π̂R) in gray
for the MAMO problem from Fig. 2. (left) 3D volumes of
the NGR and all objects at their initial poses (we omit the
shelf for ease of visualisation). (right) 2D projection of the
NGR and the workspace, overlayed with the solution to the
abstract MAPF problem formulated for this scene. Objects
A and B need to move outside the NGR, and object C needs
to move to allow A to reach its goal. MAPF solution paths
are shown in pink.

any 1 ≤ i, j ≤ n , i ̸= j.
Although a thorough review of MAPF literature is be-

yond the scope of this work, we would like to highlight that
the MAPF problem is NP-hard to solve optimally (Yu and
LaValle 2013). While MAPF typically focuses on finding
paths on discrete graphs, multi-robot motion planning tries
to compute dynamically feasible trajectories for robots in
continuous space (Dayan et al. 2021; Shome et al. 2020).
The agents in our MAPF formulation (movable objects) are
artificially actuated so we are not concerned with any ob-
ject dynamics. This allows us to solve the simpler discrete
MAPF problem and the solution directly informs us of de-
sirable final poses for the objects for the MAMO problem.
We use Conflict-Based Search (CBS) (Sharon et al. 2015),
a complete and optimal MAPF algorithm, to solve our ab-
stract MAPF problem.

The M4M Planning Algorithm
We call our algorithm M4M: Multi-Agent Pathfinding for
Manipulation Among Movable Objects. M4M is given ac-
cess to a physics-based simulator (PyBullet (Coumans and
Bai 2016–2019)) to ensure that no interaction constraints
defined in the MAMO problem are violated. We note that a
MAMO problem P to retrieve the OoI with OM ̸= ∅ is solv-
able iff the simpler problem P̂ without any movable objects
i.e., OM = ∅ can be solved. We denote a solution trajectory
to P̂ as π̂R. Let V (π̂R) denote the volume occupied by the
robot arm in the workspace during execution of π̂R. V (π̂R)
specifies a “negative goal region” (NGR) (Dogar and Srini-
vasa 2012) for the movable objects. A NGR is a sufficient
volume of the 3D workspace which, if there are no objects
inside it, allows the robot arm to retrieve the OoI without
other contacts. If all movable objects can be rearranged such
that they are outside V (π̂R), the robot can execute π̂R to re-
trieve the OoI. Fig. 3 shows a NGR V (π̂R) for the problem
from Fig. 2.

Algorithm 1 contains the pseudocode for M4M. At a

high-level, M4M first computes π̂R (Line 3) and the NGR
V (π̂R) (Line 4). It then iterates over two steps:

1. Compute a solution to the abstract Multi-agent Pathfind-
ing (MAPF) problem where each movable object is
treated as an agent that needs to escape the NGR without
colliding with other agents using Conflict-Based Search
(CBS) (Sharon et al. 2015), a complete and optimal
MAPF algorithm.

2. Pick a movable object to be rearranged according to
the MAPF plan computed in 1 and find a valid non-
prehensile push for it by forward simulating potential
pushes using a physics-based simulator.

Algorithm 1 uses replan to ensure CBS is only called
to solve new MAPF problems. After the first CBS call,
replan triggers subsequent CBS calls once a valid push
has been found i.e., at least one object has been moved. This
leads to a different MAPF problem with new object poses.
Until a valid push is found, we sample and simulate pushes
for all objects that move in the MAPF solution.

The PLANRETRIEVAL function takes as input a set of ob-
jects to be considered as immovable obstacles for the robot
and runs Multi-Heuristic A∗ (Aine et al. 2016) to find an arm
trajectory in XR to retrieve the OoI.

CBS is called in Line 13 with the latest known movable
object poses in SE(3) to obtain a set of paths that ensure
they all satisfy the NGR V (π̂R). This searches over all pos-
sible rearrangements of the scene from the current state,
without ever querying a physics simulator, by assuming that
movable objects are artificially actuated agents.

We then loop over all objects that need to be rearranged
(from Line 16) and try and find a valid push for them. If
a valid push is found (Line 22), it is added to the final se-
quence of arm trajectories to be executed Ψ, and the pose of
that object is updated for future iterations.

M4M terminates either when the allocated planning bud-
get expires, or we successfully find a trajectory to retrieve
the OoI in the presence of all objects (OI ∪ OM ) as obsta-
cles in Line 8. Although this trajectory πR may be different
from π̂R (Line 3), it will still retrieve the OoI successfully
since it is guaranteed to not make contact with any object
(immovable or movable). The sequence of trajectories Ψ can
then be executed in order to rearrange the movable objects
(if required) and finally ending in successful OoI retrieval.

MAPF Abstraction for Manipulation
A fundamental challenge to solving MAMO problems re-
quires determining which objects need to be rearranged and
where they should be moved. The key idea in this paper uses
existing MAPF solvers to compute a potential rearrange-
ment of the scene which leads to successful OoI retrieval.
Fig. 4 shows a series of images of movable objects execut-
ing the solution to the abstract MAPF problem we formulate
in this section. In this abstract space where the movable ob-
jects are artificially actuated, they can rearrange themselves
out of the way of the robot arm as it retrieves the target ob-
ject.

Our MAPF abstraction includes all movable objects om ∈
OM as agents. The high-level of CBS searches a tree of all



Algorithm 1: Multi-Agent Pathfinding for Manipulation
Among Movable Objects
Input: Initial movable objects Oinit

M , Immovable obstacles OI

Output: Sequence of arm trajectories Ψ
1: OM ← Oinit

M {Rearranged object positions}
2: Ψ← ∅ {Sequence of arm trajectories}
3: π̂R ← PLANRETRIEVAL(OI) {OoI retrieval trajectory}
4: Compute V(π̂R)
5: replan← true, done← false
6: while time remains do
7: if replan then
8: πR ← PLANRETRIEVAL(OI ∪ OM )
9: if πR exists then

10: Ψ← Ψ ∪ {πR}, done← true
11: break
12: end if
13: {πom}om∈OM ← CBS(OM ,OI ,V(π̂R))
14: replan← false
15: end if
16: for om ∈ OM do
17: if πom = ∅ then
18: continue
19: end if
20: ψ ← PLANPUSH(om, πom ,OM ,OI)
21: (valid, o′m)← SIMULATEPUSH(ψ)
22: if valid then
23: Ψ← Ψ ∪ {ψ}, replan← true
24: UPDATEPOSE(OM , o

′
m)

25: break
26: end if
27: end for
28: end while
29: if ¬done then
30: return ∅
31: end if
32: return Ψ

possible solutions in a best-first manner by resolving agent
conflicts into constraints on agent motion. For two agents
that collide along their paths, either one can be in the loca-
tion where and when they collide in the final solution but
not both. We check for collisions between agents in space
and time in their full SE(3) configuration space. The low-
level of CBS runs single-agent searches for each agent on a
discrete graph GCBS = (V,E) where vertices V ⊂ SE(3)
are object poses. All agents have a discrete action space
corresponding to a four-connected grid on the (x, y)−plane
of the shelf on which they are placed. Edges (v, v′) ∈ E
take unit time to traverse and either v ≡ v′, or the x− or
y−coordinate of the agent pose changes by 1 cm between v
and v′.

Agent goals in the MAPF abstraction are specified with
respect to π̂R and V (π̂R) – the solution of the simpler
MAMO problem P̂ that does not include any movable ob-
jects and its corresponding “negative goal region” (NGR).
Let B(om, x) denote the volume occupied by movable object
om ∈ OM at pose x ∈ SE(3). om satisfies the NGR if it is
“outside” it, i.e. in a state x such that V (π̂R)∩B(om, x) = ∅.
To be precise, each agent om in the MAPF problem has a set
of possible goals {g : g ∈ V ∧ V (π̂R) ∩ B(om, g) = ∅}.

Figure 4: A sequence of images (1) − (4) showing artifi-
cially actuated movable objects executing the solution to the
abstract MAPF problem.

A solution to this MAPF abstraction, shown in Fig. 3, pre-
scribes a rearrangement strategy in terms of which objects
to move and where. The solution is a set of paths for mov-
able objects {πom}om∈OM

whose final states πend
om satisfy

the NGR. If we can rearrange all om ∈ OM to their respec-
tive πend

om poses, we know that the trajectory π̂R will success-
fully retrieve the OoI, thereby solving the MAMO problem.

Generating Non-Prehensile Push Actions
Given a path πom for om ∈ OM from the MAPF solution,
PLANPUSH (Algorithm 2 and Algorithm 1, Line 20) deter-
mines how an object may be rearranged (Fig. 5). We would
like to move the object to πend

om , which is known to satisfy the
NGR. To compute a push trajectory, we first shortcut πom
(taking into account collisions with immovable obstacles
OI ) into a series of straight line segments defined by points
{x1 = πstart

om , . . . , xn = πend
om } and compute the point of

intersection xaabb of the ray from x1 along the direction
−−−−−→
(x2, x1) with the axis-aligned bounding box of om (Algo-
rithm 2, Lines 1- 3). PLANPUSH then computes a collision-
free path between successive pushes by planning in XR with
all objects OI ∪ OM as obstacles to a point x0

push sampled
around xaabb. We sample (x, y) coordinates for x0

push from
N (xaabb, σI), σ = 2.5 cm. The z−coordinate is fixed at
3 cm above the shelf for the entire push action. If this path
is found (Line 7), PLANPUSH similarly samples points xi

push

around each xi in the shortcut path. It runs inverse kinemat-
ics (IK) in sequence for each segment of the push action
between points

(
xi−1

push, x
i
push

)
, i = {1, . . . , n} (loop from

Line 9). If all IK calls succeed, we return the full push tra-
jectory by concatenating π0 with all push action segments.

This push action, informed by the MAPF solution about
which object to move where, is forward simulated with a
physics model to verify whether it satisfies all interaction
constraints for all objects. If so, it is queued into the se-
quence of rearrangements that will be executed as part of the
MAMO solution returned by M4M (Algorithm 1, Line 22).

Theoretical Discussion
The solution returned by M4M lies on a discrete graph
G0 = (V0, E0) whose vertices V0 are MAMO states in the



Algorithm 2: Non-Prehensile Push Planner PLANPUSH

Input: Object to be pushed om, MAPF solution path πom

for object om, Current movable object poses OM , Immovable
obstacles OI

Output: Push trajectory ψ ∈ XR for object
om
1: {x1, . . . , xn} ← SHORTCUTPATH(πom)
2: aabb← COMPUTEAABB(om)

3: xaabb ← RAYAABBINTERSECTION
(
aabb,

−−−−−→
(x2, x1)

)
4: x0push ∼ N (xaabb, σ)
5: ADDOBSTACLES(OI ∪ OM )
6: π0 ← PLANAPPROACH(x0push)
7: if π0 exists then
8: REMOVEOBSTACLES(OM )
9: for i = {1, . . . , n} do

10: πi ← INVERSEKINEMATICS

(
πend
0 ,
−−−−−−−−→
(xi−1

push , x
i
push)

)
11: if πi exists then
12: π0 ← π0 ∪ πi

13: else
14: return ∅
15: end if
16: end for
17: end if
18: return π0

composite configuration space X = XR×XO1
×· · ·×XOn

and edges E0 correspond to actions taken by the robot arm.
The iterative nature of M4M greedily commits to valid push
actions found during the search for a MAMO solution. This
notion of planning “in the now” (Kaelbling and Lozano-
Pérez 2011) drastically reduces search efforts since we do
not consider (i) all feasible pushes for an object that needs
to be rearranged to a specific location, (ii) all orderings of
all feasible push actions to realise a particular rearrangement
for a set of objects, and (iii) all possible rearrangements for
a set of objects. The trade-off associated with the computa-
tional savings of being greedy makes M4M incomplete with
respect to G0.

Two modifications to M4M that introduce notions of
backtracking and feedback would result in a resolution com-
plete version with respect to G0. First, for a particular rear-
rangement suggested by the MAPF solver, we must consider
all feasible pushes for an object and all orderings of these
pushes for the set of objects that need to be rearranged. This
can be formulated as a search over a discrete graph where
nodes are MAMO states and edges represent abstract actions
to move an object, changing the greedy nature of M4M to a
systematic search inspired by the Minimum Constraint Re-
moval problem (Hauser 2014). Searching this graph is com-
putationally expensive since each abstract action can corre-
spond to multiple push actions, however this graph contains
all possible orderings of all feasible pushes to realise a spe-
cific rearrangement. If this search fails to find a solution, we
must query the MAPF solver for a different solution since
we failed to realise the previous one. This feedback loop
would force the algorithm to systematically search over all
possible rearrangements of the scene since the MAPF solver,

AABB

Figure 5: 2D illustration of our push planner. Given a mov-
able object om (blue) and its MAPF solution path πom
(pink), we shortcut πom while accounting for immovable
obstacles OI (red) to get the green path of straight line seg-
ments. After computing xaabb by intersecting the

−−−−−→
(x2, x1)

ray with the axis-aligned bounding box for om, the push
action (cyan) is computed via inverse kinematics between
sampled points xi

push ∼ N (xi, σI), i = {0, . . . , n}, x0 :=

xaabb.

itself being complete with respect to GCBS, will find any
possible rearrangement. Developing an efficient version of
such a resolution complete algorithm is ongoing work.

Experimental Results
Simulation Experiments
We run our simulation experiments in MAMO workspaces
of three difficulty levels shown in Fig. 6. Each workspace
has one OoI (yellow), four immovable obstacles (red), and
different numbers of movable objects (blue). Objects are
cylinders and cuboids with random sizes, initial poses,
masses, and coefficients of friction. We assume perfect
knowledge of the initial workspace state and all object pa-
rameters. We set a planning timeout of 120 s for 100 ran-
domly generated MAMO problems at each level. Our analy-
sis includes two versions of our algorithm – M4M refers to
Algorithm 1, and M̂4M refers to a version which only calls
CBS once (after Line 4) and does not iterate between calling
CBS and finding a valid push in simulation.

Baselines: We compare the performance of M4M against
three types of baselines for solving MAMO problems with
non-prehensile interactions. The first are standard imple-
mentations of sampling-based algorithms KPIECE (Sucan
and Kavraki 2012) and RRT (LaValle and James J. Kuffner
2001) from OMPL (Şucan, Moll, and Kavraki 2012) that
search the entire MAMO state space X by randomly sam-
pling robot motions.

The second baseline, Selective Simulation (Suhail Saleem
and Likhachev 2020) (SELSIM), is a search-based algorithm
that interleaves a ‘planning’ phase and a ‘tracking’ phase.



Level 1 Level 2 Level 3Level 1
(1, 4, 10) (1, 4, 15)(1, 4, 5)1 4 5 1 14 410 15

Figure 6: MAMO problems of differing complexity. From
left to right, Levels 1, 2, and 3 have 5, 10, and 15 movable
objects respectively. Each Level has 1 OoI and 4 immovable
obstacles.

The former queries the physics-based simulator for interac-
tions with a set of ‘relevant’ movable objects identified so
far. The latter executes the solution found by the planning
phase in the presence of all objects in simulation and, if any
interaction constraints are violated, it adds the ‘relevant’ ob-
ject to the set. It only uses simple motion primitives that in-
dependently change robot arm joint angles.

Our final baseline is the work from Dogar et al. (Dogar
and Srinivasa 2012) (DOGAR) which introduced the idea of
a negative goal region (NGR) we use in M4M. DOGAR re-
cursively searches for a solution backwards in time, simi-
lar to (Stilman et al. 2007). It first finds an OoI retrieval
trajectory ignoring all movable objects. The NGR induced
by this trajectory helps identify a set of objects to be rear-
ranged, and the OoI is added as an obstacle. If an object is
successfully rearranged, the NGR and set of objects still to
be rearranged are updated with the trajectory found, and the
rearranged object is added as an obstacle at its initial pose.
This process continues until no further objects need to be
rearranged. Our implementation of DOGAR finds the same
OoI retrieval trajectory as M4M, and uses the same push ac-
tions to try and rearrange objects. Notably, DOGAR only has
information about which objects to move but not where to
move them. Our implementation finds the closest cell out-
side the latest NGR for an object and samples points around
this location to try to move the object towards.

Results: Table 1 shows the result of our experiments
where we present the min/median/max values for total plan-
ning time and simulation time of successful runs only. Ex-
periments were run on a 4GHz Intel i7-4790K CPU with
28GB 1600MHz DDR3 RAM.

Both versions of M4M solve the most problems across
all difficulty levels. For Levels 1, 2, and 3, the M4M solu-
tion successfully executed 0.8, 1.9, and 3.1 push actions on
average. The difference in performance between M4M and
M̂4M highlights the benefit of the iterative nature of M4M.
Since MAPF paths are usually not precisely replicated in
simulation via pushes, querying the solver repeatedly with
an updated workspace configuration leads to more informed
future paths for objects, instead of trying to forcibly push
them to the first goal configuration suggested by MAPF.

All baseline algorithms from Table 1 suffer due to poor
exploration over the space of rearrangements. Our approach
benefits from the MAPF abstraction to produce guidance on
where to move each object to free up the NGR. The stochas-
tic sampling of push actions used by our push planner leads
to complex, multi-body non-prehensile interactions that sat-

isfy interaction constraints in the final solution. In contrast
DOGAR naively samples pushes to be simulated, and neces-
sarily tries to ensure there is no overlap between the NGR
and movable objects, even if a slightly different collision-
free path can be found to retrieve the OoI (Algorithm 1,
Line 8). This strategy suffers when sampled points are near
immovable obstacles, and limits the possible rearrangements
considered since movable objects that are rearranged suc-
cessfully are treated as immovable obstacles. DOGAR also
never executes a potential trajectory until there is no over-
lap between the NGR and movable objects, unlike SELSIM
which simulates all trajectories found during planning. In
fact, all SELSIM successes in Table 1 correspond to scenes
where the very first planned trajectory succeeds in OoI re-
trieval in simulation. This is only true when there is mini-
mal overlap between the NGR and movable objects. When
any movable object needs to be rearranged, SELSIM suffers
from its poor action space – the simple motion primitives are
ineffective at causing meaningful robot-object interactions
in the workspace. KPIECE and RRT benefit significantly
from goal biasing in simpler scenes where either little to no
robot-object interactions are required or the objects that need
to be moved have nice physical properties (large supporting
footprint, low center-of-mass, low coefficient of friction).

Real-World Performance on the PR2
We ran M4M on a PR2 robot where we used a refriger-
ator compartment as our MAMO workspace (Fig. 7). We
placed five objects from the YCB Object Dataset (Çalli et al.
2017) in the refrigerator. Four of these were movable and the
tomato soup can was the object-of-interest. Objects were lo-
calised using a search-based algorithm (Agarwal, Han, and
Likhachev 2020) run on a NVidia Titan X GPU. We gave
M4M a total planning timeout of 120 s.

Out of 16 perturbations of the initial scene from Fig. 7,
12 runs successfully retrieved the OoI. Across the success-
ful runs the planner took 56.41± 27.29 s to compute a plan
of which 49.26± 24.21 s was spent simulating pushes. Fail-
ures were due to interaction constraints being violated dur-
ing execution by the PR2. Since M4M returns a solution that
does not violate constraints in simulation, failures are due to
modelling errors between the simulator and the real-world.
Specifically, accurately computing coefficients of friction is
difficult and can lead to differing contact mechanics in sim-
ulation than the real-world. Fig. 7 shows the solution to a
MAMO problem being executed by the PR2. It moves the
coffee can out of the way, pushes the potted meat can slightly
aside, and finally the OoI (tomato soup can) is extracted
while also nudging the potted meat can.

Comparison of MAPF Solvers
M4M uses a complete MAPF solver (CBS) to ensure it does
not miss any potential rearrangement of a scene (with re-
spect to the graph GCBS of the low-level CBS searches). An-
other class of MAPF solvers assigns priorities to agents and
solves a sequence of single-agent planning problems based
on this prioritisation (Erdmann and Lozano-Pérez 1987).
This prioritised planning (PP) scheme trades off algorith-
mic incompleteness and solution suboptimality for practical



Table 1: Simulation Study for MAMO Planning in Cluttered Scenes - success rates and min/median/max times

Metrics Level Planning Algorithms

M4M M̂4M DOGAR SELSIM KPIECE RRT

Success
Rate (%)

1 92 79 40 33 48 55
2 73 54 20 21 33 40
3 62 36 6 16 17 26

Total
Planning
Time (s)

1 1.0 / 2.6 / 102.5 1.0 / 2.4 / 103.8 0.1 / 0.9 / 115.3 0.004 / 0.02 / 0.03 7.4 / 23.4 / 117.8 7.1 / 15.8 / 101.4
2 1.2 / 6.6 / 115.4 1.3 / 2.6 / 100.3 0.3 / 0.5 / 113.5 0.002 / 0.008 / 0.2 9.3 / 28.2 / 112.0 8.6 / 27.6 / 104.9
3 1.3 / 7.2 / 116.1 1.6 / 2.4 / 72.6 0.2 / 0.4 / 55.0 0.004 / 0.01 / 0.03 10.6 / 32.0 / 98.5 10.3 / 26.7 / 113.4

Simulation
Time (s)

1 0 / 0 / 58.6 0 / 0 / 20.1 0 / 0 / 42.0 27.3 / 35.0 / 43.6 0 / 10.6 / 99.0 0 / 4.4 / 87.2
2 0 / 0.4 / 75.9 0 / 0 / 37.0 0 / 0 / 20.9 36.7 / 44.1 / 58.3 0 / 16.1 / 95.4 0 / 16.7 / 83.7
3 0 / 0.4 / 55.1 0 / 0 / 24.3 0 / 0 / 20.0 47.3 / 55.7 / 76.0 0 / 18.3 / 79.3 0 / 15.3 / 101.2

Figure 7: A MAMO solution generated by M4M. The tomato soup can (yellow outline) is the OoI, all other objects are movable.

efficiency. For all problems solved by M4M in Table 1, we
compare the performance of CBS against PP in terms of
success rates for an initial solution and planning times.

CBS succeeds in finding an MAPF solution 100% of the
time. Given the same 30 s timeout as CBS, PP failed to
find solutions for 2 Level 1 problems, 9 Level 2 problems,
and 9 Level 3 problems. The bottleneck for MAPF is col-
lision checking between objects in SE(3). CBS only col-
lision checks solution trajectories returned by the low-level
searches of the corresponding agents. In addition to being
incomplete, PP turns out to also be much slower than CBS.
This is because PP collision checks every state expanded by
the low-level search against corresponding states of higher
priority agents, which is slow when many agents collide with
each other along their solution paths. We compare the ratio
of planning times for CBS to those for PP across the three
levels. The median value of this ratio TCBS/TPP for Level 1
is 1.22 (PP is at least 22% faster in half the problems). For
Levels 2 and 3, this value is 0.89 (PP is at least 11% slower
in half the problems) and 0.63 (PP is at least 37% slower
in half the problems). The ability to solve all problems and
in less time when the MAMO problem is more complicated
highlights the benefit of using CBS over PP.

Conclusion and Discussion
This paper presents M4M: Multi-Agent Pathfinding for Ma-
nipulation Among Movable Objects, an algorithm to plan
for manipulation in heavy clutter that considers complex in-
teractions such as rearranging multiple objects simultane-
ously, and tilting, leaning and sliding objects. These MAMO

problems include interaction constraints that define how the
robot is allowed to interact with objects. M4M decouples
the search over all rearrangements of movable objects from
the need to query a physics-based simulator. M4M uses a
MAPF abstraction to the MAMO problem to find suitable
rearrangements, and a non-prehensile push planner to realise
these rearrangements by utilising complex multi-body inter-
actions. The MAPF formulation searches over object con-
figurations without a simulator, and upon returning a solu-
tion, M4M computes non-prehensile push actions to realise
the suggested rearrangement within the simulator. It dramat-
ically outperforms alternative approaches that do not reason
about such interactions efficiently.

M4M greedily commits valid pushes found to its se-
quence of rearrangement trajectories. This greedy behaviour
makes M4M incomplete, given that it has no ability to back-
track from this decision. In the future we hope to address this
incompleteness of M4M by developing an algorithm that
considers (i) all feasible pushes for an object that needs to
be rearranged to a specific location, (ii) all orderings of all
feasible push actions to realise a particular rearrangement
for a set of objects, and (iii) all possible rearrangements
for a set of objects. Additionally, the MAPF solver used in
M4M should be modified to use a cost function which has
information about robot kinematics and pushing dynamics
so as to compute and thus simulate better push actions. Us-
ing a model-based push planner, even for simple straight-
line pushes like those used by M4M, will greatly reduce
the time M4M currently spends stochastically sampling and
simulating valid pushes.
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M.; López, C. L.; Ruml, W.; and Sturtevant, N. R., eds., Pro-
ceedings of the Fifth Annual Symposium on Combinatorial
Search, SOCS 2012, Niagara Falls, Ontario, Canada, July
19-21, 2012. AAAI Press.
Sharon, G.; Stern, R.; Felner, A.; and Sturtevant, N. R.
2012b. Meta-Agent Conflict-Based Search For Optimal
Multi-Agent Path Finding. In Borrajo, D.; Felner, A.; Korf,
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Şucan, I. A.; Moll, M.; and Kavraki, L. E. 2012. The Open
Motion Planning Library. IEEE Robotics & Automation
Magazine, 19(4): 72–82. https://ompl.kavrakilab.org.
Suhail Saleem, M.; and Likhachev, M. 2020. Planning
with Selective Physics-based Simulation for Manipulation
Among Movable Objects. In 2020 IEEE International Con-
ference on Robotics and Automation (ICRA), 6752–6758.
Turpin, M.; Mohta, K.; Michael, N.; and Kumar, V. 2014.
Goal assignment and trajectory planning for large teams of
interchangeable robots. Auton. Robots, 37(4): 401–415.
van den Berg, J. P.; Stilman, M.; Kuffner, J.; Lin, M. C.; and
Manocha, D. 2008. Path Planning among Movable Obsta-
cles: A Probabilistically Complete Approach. In Choset, H.;
Morales, M.; and Murphey, T. D., eds., Algorithmic Foun-
dation of Robotics VIII, Selected Contributions of the Eight
International Workshop on the Algorithmic Foundations of
Robotics, WAFR 2008, Guanajuato, Mexico, December 7-9,
2008, volume 57 of Springer Tracts in Advanced Robotics,
599–614. Springer.
Vieira, E.; Nakhimovich, D.; Gao, K.; Wang, R.; Yu, J.; and
Bekris, K. E. 2022. Persistent Homology for Effective Non-
Prehensile Manipulation. In IEEE International Conference
on Robotics and Automation (ICRA).
Wagner, G.; and Choset, H. 2011. M*: A complete mul-
tirobot path planning algorithm with performance bounds.
In 2011 IEEE/RSJ International Conference on Intelligent
Robots and Systems, IROS 2011, San Francisco, CA, USA,
September 25-30, 2011, 3260–3267. IEEE.
Wang, R.; Gao, K.; Nakhimovich, D.; Yu, J.; and Bekris,
K. E. 2021. Uniform Object Rearrangement: From Com-
plete Monotone Primitives to Efficient Non-Monotone In-
formed Search. In International Conference on Robotics and
Automation (ICRA) 2021.
Wilfong, G. T. 1991. Motion Planning in the Presence of
Movable Obstacles. Ann. Math. Artif. Intell.
Yu, J.; and LaValle, S. M. 2013. Structure and Intractabil-
ity of Optimal Multi-Robot Path Planning on Graphs. In
desJardins, M.; and Littman, M. L., eds., Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence,
July 14-18, 2013, Bellevue, Washington, USA. AAAI Press.


