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Abstract— The ability of autonomous mobile robots to react
to and recover from potential failures of on-board systems is an
important area of ongoing robotics research. With increasing
emphasis on robust systems and long-term autonomy, mobile
robots must be able to respond safely and intelligently to
dangerous situations. Recent developments in computer vision
have made autonomous vision based navigation possible. How-
ever, vision systems are known to be imperfect and prone to
failure due to variable lighting, terrain changes, and other
environmental variables. We describe a system for learning
simple failure recovery maneuvers based on experience. This
involves both recognizing when the vision system is prone to
failure, and associating failures with appropriate responses
that will most likely help the robot recover. We implement
this system on an autonomous quadrotor and demonstrate
that behaviors learned with our system are effective in recov-
ering from situational perception failure, thereby improving
reliability in cluttered and uncertain environments.

I. INTRODUCTION

Vision systems are known to be imperfect, which makes

the vision system on any mobile robot prone to failures

[1]. A number of different ideas have been explored in the

robotics and computer vision literature that try to quali-

tatively assess the reliability of vision systems. Similarly,

there is ongoing research that tries to predict failures in

perception systems. However, we believe that it is equally

important to make intelligent decisions once a failure has

been predicted or recognized in order to mitigate any

dangerous situations that might ensue. This is important

to ensure long-term autonomy of mobile robots, and make

them robust to the widespread situational changes that may

occur in the environment the robot is operating in. An

example of this from our system is shown in Fig. 1.

The task of associating failures with recovery maneuvers

is challenging for three primary reasons. First, as robots

become more robust due to advances in hardware and soft-

ware, they will encounter failures less frequently. Second,

associating failures with recovery maneuvers to some extent

depends on domain knowledge related to the environment

a robot operates in. This will cause different robots to

possibly learn different recovery maneuvers. Finally, since

mobile robots work on real-time data streams, they will

almost certainly run into situations that could not possibly

have been accounted for in any training set presented to

the robot. It is therefore important to continue to learn

from past experience for as long as possible. It is also
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Fig. 1. After the quadrotor is alerted of a failure (possibly due to a
combination of over-exposure and lack of features in the scene) on the
left, our system tells it to execute the rotate left maneuver. At the end of
this maneuver as shown on the right, the quadrotor has turned away from
the source of illumination, and has enough information in the scene to
continue its monocular flight. This is deemed a successful recovery from
the perception failure.

difficult to manually label the different modes of failure.

For mobile robot vision systems, over- or under-exposed

images, motion blur, large inter-frame rotation, lack of

texture, shadows etc. could all potentially cause failures.

Fig. 2 shows example images from our actual flight tests

that triggered perception failures, which were then resolved

by one of the recovery maneuvers. The supervised learning

task of classifying failures thus becomes intractable since it

is almost impossible to label images in a training set with

the cause of failure. A large number of factors could cause

a vision system to fail. Rather than identifying the cause

of failure, it then becomes more important to identify the

recovery maneuver most likely to succeed in mitigating the

failure.

An integral part of the framework presented in this paper

is the ability of a robot to predict failures in their vision

systems ahead of time. In the associated literature, this abil-

ity has been called introspection [2]. While a considerable

amount of effort in the past has been dedicated to minimiz-

ing failures, predicting and identifying these failures during

runtime has often been neglected. By extension, learning

recovery maneuvers for these failures is a critical problem

that we feel has not been given enough attention. The key

contribution of this paper is the framework of data collection

and associated training of classifiers that help us establish

these relations between a failure and the best recovery

maneuver. The set of recovery maneuvers is created by

leveraging domain knowledge available to us. Creating this

set from accumulated experience, or generating recovery
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Fig. 2. Examples of images that failed during flight. Failures were resolved by (a) translating right, (b) translating left, (c) rotating right, and (d) rotating
left. Intuitive causes of failure include direct glare from sunlight (c,d), strong shadows (b, d), open area (b,c), large obstacles preventing adequate parallax
(a), and overexposure (a,c,b). Our algorithm used thousands of images like these to learn which trajectories are most likely to recover from perception
failures.

maneuvers on-the-fly, is an open question that lies outside

the scope of this work.

The setup that we are using for the problem and approach

detailed in this paper is a quadrotor that uses monocular vi-

sion for autonomous flight through a cluttered environment.

In our case, the intended environment is a dense forest, with

roughly 2 trees per 4m×4m area. We have limited sensing

in that there is no GPS available to us, nor can we globally

localize ourselves in the environment since a precomputed

map is also not available. In this respect, the widely studied

field of SLAM in robotics is not directly utilized by our

system.

II. RELATED WORK

The idea of introspection is central to the field of psy-

chology [3]. The analogy in robotics is the model repre-

sentation of a robot’s current operational state1. This idea

was first introduced by Morris et al. [4] who used it in an

information-theoretic setting to improve a robot’s decision

making capability when it became uncertain of its oper-

ational state. Recently, the idea of introspection has been

adopted for perception systems in terms of quantifying the

predictive variance of classification and detection algorithms

[5–7]. The idea there is to use algorithms cognizant of

the fact that the assumption of independent and identically

distributed (iid) data is usually not valid for real-world

robotic systems. These algorithms can then be utilized in an

active learning framework [7] to further improve predictor

accuracy. This is in contrast to the one-shot learning [8]

and zero-shot learning [9] paradigms that do not express

predictor uncertainty and seek to maximize accuracy. All

of the above work relies on looking at the output from a

system to get a confidence estimate and in turn predict a

probability of failure. The notion of introspection that we

utilize in this work is best described by Daftry et al. [2]

who obtain a confidence estimate by analyzing the input to

the system. The key difference is that this approach makes

it possible to quantify the reliability of input data which

directly affects the quality of the prediction made.

1Operational state is a high-level representation of the configuration of
various sub-processes in a robotic system. It should not be confused with
an instance from the state space model of a robot. More details can be
found in [4].

A closely related area of work concerns executing recov-

ery maneuvers once a failure has been predicted. Previous

work in this space has focused on the notion of exception
handling, which aims to associate or learn recovery actions

for specific failures [10, 11]. However, both of those works

make strong assumptions about the cause of failure (which

is known in both cases) and are thus able to associate

them with precise recovery maneuvers. Our work makes no

such assumptions, and instead aims to predict a recovery

maneuver that is most likely to succeed. Verma et al.
[12] utilize Bayesian state estimation and particle filters

to identify failures, but make no attempt to recover from

these failures. Perhaps the work most closely related to

the work presented in this paper is that of Prasad et al.
[13]. They use a reinforcement learning based framework

to penalize state-action pairs that lead to SLAM failures.

The key difference between their work and ours is that

given that they operate in structured, indoor environments,

they can leverage SLAM algorithms to obtain information

about pose estimation and tracking errors. This information

is not available to us directly, and so we cannot leverage

SLAM algorithms to predict failures or potential recovery

maneuvers.

III. VISION-BASED AUTONOMOUS FLIGHT

In this section we present details about the hardware and

software used in our quadrotor for vision-based autonomous

flight through a dense, cluttered forest. Details associated

with learning failure responses are deferred until Section

IV.

A. Setup
The primary hardware platform is a modified 3DR Ar-

duCopter with an on-board quad-core ARM processor and

a Microstrain 3DM-GX3-25 IMU. There are two monocular

cameras on the quadrotor. A downward facing PlayStation

Eye camera is used for real-time pose estimation. The image

stream from a front-facing PointGrey Chameleon camera

is relayed to the base station, where the perception and

planning modules use it for monocular navigation. These

modules use a semi-dense 3D reconstruction of the scene

to select the optimal trajectory which is then sent back to

and executed by the quadrotor. The quadrotor platform used

for this work is shown in Fig. 3.
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Fig. 3. The testbed: an autonomous quadrotor for flight through dense
forests with a camera as the primary sensor [14].

Fig. 4. Receding horizon control using a ground-truth depth image from
a stereo camera. Trajectories in red have the greatest chance of collision,
while the thick light-green trajectory is chosen as the best in this case.

B. Perception, Planning, and Control

The perception and planning modules run on the base

station, while a pure-pursuit based PD controller is used for

trajectory tracking on-board the quadrotor.

Mapping: We utilize a direct visual odometry based

approach [15, 16] for semi-dense 3D scene reconstruction.

This is then converted into an inverse-depth representation

and propagated over multiple frames to obtain the final

depth estimates for the pixels in the image [14].

Introspection: A deep spatio-temporal convolutional net-

work, with architecture similar to AlexNet [17], is used to

generate a good feature vector representation of the images

from the front-facing camera’s stream. These features are

passed through a learned linear SVM which predicts a

failure score between 0 (no failure) and 1 (failure) as output

[2]. A failure of the perception system occurs when it is

unable to reliably label the trajectories in our library as

collision-free or collision-prone. The d-dimensional feature

vectors xi ∈ R
d from the fc7 layer of the spatial ConvNet

for each image i are later used during training and inference

of failure responses described in Section IV.

Planning and Control: We use a receding horizon

planner that selects the current best trajectory out of a

library of 78 optimally sampled motion primitives [18].

The best trajectory is selected such that a weighted sum of

certain parameters is minimized. These include probability

of collision along the trajectory, deviation from current

heading, and deviation from desired/goal heading. These

costs are calculated using the depth map obtained from the

perception module. Once a trajectory has been selected, it

is sent over to the quadrotor that uses a pure-pursuit PD

controller to track the trajectories. A snapshot of the planner

running on ground-truth stereo images is shown in Fig. 4.

Fig. 5. We use four simple failure response maneuvers in this work:
translate right, translate left, rotate right, and rotate left. These were
selected by considering their ease of execution and resulting impact on
the camera scene.

Fig. 6. Block diagram for learning failure responses. The key concept
involved is learning the association between failures predicted by a deep
introspection framework [2] and recovery maneuvers.

C. Failure Response

Simple maneuvers have the potential to resolve different

types of perception failures, but which maneuver is best for

a given failure is not always intuitive. The set of recovery

maneuvers we use is shown in Fig. 5. Since these trajectories

will later be used as target variables for two SVMs, we

introduce some notation here. yi ∈ Y represents a particular

failure response associated with failure i, where Y =
{translate right, translate left, rotate right, rotate left}
represents the set of possible responses.

IV. LEARNING FAILURE RESPONSES

This section contains details about the entire pipeline

involved in learning failure responses. This pipeline is

shown schematically in Fig. 6.

A. Recovery Maneuvers

Maneuvers that will lead to recovery in a variety of

failure cases must be chosen using domain knowledge

before training the classifier. Maneuvers should be simple,

interfere minimally with the robot’s high-level task, not

expose the robot to additional dangers while perception is

unreliable, and provide a reasonable likelihood of ending

the unfavorable conditions that led to perception failure. It
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is obvious that the approach outlined in this paper requires

at least two candidate maneuvers in order to make a decision

about which one is better, but no other assumption is made

pertaining to these maneuvers. The maneuvers themselves

simply act as class labels for the predictors. For this

work, the four recovery maneuvers considered were Y =
{translate right, translate left, rotate right, rotate left} as

shown in Fig. 5. During execution, these maneuvers are

sandwiched between hover commands sent to the quadrotor.

Both translate trajectories cause the quadrotor to translate

in the respective directions for 5s with a linear velocity

of ±0.1m/s as desired. Similarly, the other two trajectories

cause the quadrotor to yaw by ±45◦ with a constant angular

velocity over 5s.

B. Data Collection

Ideally, once a perception failure is predicted all candidate

maneuvers would be executed and recovery status would be

recorded for each maneuver. Practically however, we can

only execute one of the maneuvers and record its recovery

status. To collect training data, when a failure is predicted,

only one of the candidate maneuvers is executed and the

recovery status at the end of the maneuver is recorded. If

the perception system recovers from the failure at any time

during the maneuver, that maneuver is considered recov-
ered. The completed data set then contains the failure, the

maneuver, and whether that maneuver resulted in recovery.

Training data was collected by holding the quadrotor as

we walked through a forest environment, executing one of

the four maneuvers every time a failure was predicted. This

handflying approach drastically reduced the time required

to collect data, and was overall logistically easier to carry

out than actual flight. The data was collected by handflying

for over 20km in this way.

Even with 20km of handflying, only 825 failures were

encountered: an insufficient number for training a robust

predictor y(x) : x ∈ R
d → |Y| that maps from a

high-dimensional feature space R
d to the set of candidate

maneuvers Y . To solve this issue, multiple images from

each maneuver were used in the training set. As soon as

the system was alerted of a perception failure, all image

frames were recorded until either the system recovered or

the maneuver ended. With about 16 frames per second

recorded, using every recorded frame would result in un-

helpful redundant data [19]. To avoid repeats, redundant

images were removed greedily, using the L1 distance norm

between fc7 feature vectors x from the deep introspection

framework as a similarity metric. Thus, a set of image

feature vectors X = {xi} ∀ i ∈ t = 1, · · · , T obtained from

a single maneuver is reduced to a set X ′ ⊂ X such that

X ′ = {x ∈ X : |xi − xj |≥ ε, ∀(i, j) ∈ |X |, i �= j}, (1)

where ε is a user-defined threshold. We chose ε such that
|X ′|
|X | = 0.1. xki and xkj refer to the kth elements of the d-

dimensional feature vectors. With a slight abuse of notation,

TABLE I

IMAGES IN THE TRAINING SET

Maneuver Recovered Failed

Translate Right 745 631
Translate Left 738 530
Rotate Right 1280 863
Rotate Left 1234 1518

Total 7539

we will refer to the set X ′ obtained from one maneuver as

X from now on.

Distance in feature space was used because similarity

between these deep features matters to the predictor, not

pixel-wise similarity between the images themselves. L1

distance in particular was used because it provides more

accurate results in high dimensional space than traditional

Euclidean distance [20].

C. Predictor Training

X = {X 1, · · · ,XN} is the entire data set of images

collected. The superscript i refers to the ith maneuver that

was executed. For the data that we collected, N = 825. This

data set is split into two sets X + and X −. X + contains all

images from trajectories that were successful in recovering

from the perception failure, while X − contains all images

from trajectories that were unsuccessful in recovering from

the perception failure. The exact numbers of images from

each class y ∈ Y in each of these two sets is shown in Table

I. Two SVMs are trained independently on these datasets

X + and X −, to predict the associated recovery maneuvers

y ∈ Y which are used as the class labels.

We use the fc7 feature vectors from the CNN inde-

pendently for predicting potential failures, and selecting a

recovery maneuver. The combination of CNN features and

SVMs is a popular architecture for supervised learning tasks

[21]. Using SVMs in combination with CNN features for

these two independent tasks is a simple and more com-

prehensible model architecture (than an end-to-end neural

network approach) that is able to outperform the existing

state-of-the-art, as we discuss later in Section V.

D. Predictor Inference

At test time, when a query image that triggered a per-

ception failure is obtained, Platt scaling [22] is used to

convert the arbitrary confidence scores from the two SVMs

to two different probabilities. We represent p+(y|x) as the

probability that the recovery maneuver leading to successful

recovery from the perception failure is y ∈ Y . Similarly,

p−(y|x) represents the probability that the recovery ma-

neuver leading to failure is y. Note that
∑

y p
+(y|x) = 1

and
∑

y p
−(y|x) = 1, but in general p+(yi|x) �= (1 −

p−(yi|x)) ∀ i.
We use the ratio of the two probabilities obtained from

the two SVMs as the scoring function s(x) ∈ R for each

such query feature vector x ∈ R
d. The query image is then

classified as belonging to the class with the greatest score.
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(a)

(b)

Fig. 7. Results obtained from the experiments. The graphs show the
percentage of failures that ended up recovery for each maneuver during
(a) Handflight, and (b) Actual flight.

ŷ = argmax
y∈Y

s(x) = argmax
y∈Y

p+(y|x)
p−(y|x) (2)

The predicted recovery maneuver ŷ is then executed. ŷ
represents the recovery maneuver maximally likely to end

in recovery and minimally likely to stay in failure.

V. EXPERIMENTS & RESULTS

A. Handflying

We first validated our approach by handflying the quadro-

tor for over 3km. The predicted recovery maneuver was

executed whenever a perception failure was encountered.

Following this approach, 69% of failures ended in recovery,

as compared to 45% when following a random maneuver

as shown in Fig. 7.

B. Actual Flight

Finally, we carried out over 6km of tests in actual

flight to test the robustness of this framework. Once a

perception failure is predicted, the quadrotor stops following

the previous trajectory it had received, and switches con-

trol over to the recovery maneuver to be executed. Upon

completion of the maneuver, it resumes trajectory tracking.

Fig. 8. Average flight distance without intervention in a dense, cluttered
forest. The bars correspond to different algorithms from robotics literature
- a purely reactive approach [23], a deliberative approach based on semi-
dense monocular depth estimation [14], the same deliberative approach
with introspection [2], and our framework which includes failure responses.

If however it did not recover, the maneuver is considered

to have failed, and a new recovery maneuver is executed

at this instant. Autonomous flight was intervened after 3
successive recovery maneuvers failed, or if the quadrotor

flew dangerously close to an obstacle (tree, branch, bush

etc.).

When the recovery maneuver was predicted by our novel

framework, the quadrotor recovered from failure 66% of the

time. In contrast, it only recovered 43% of the time if the

maneuver was chosen randomly. Fig. 7 shows these results.

In addition, with this framework in place, the quadrotor

flew for over 1, 200m on average through a dense, cluttered

forest (roughly 2 trees per 4m×4m area) at 1.5m/s before

requiring human intervention.

Fig. 8 is a graph comparing various approaches that have

been used for monocular flight through comparably dense

forests. The average distance flown by the quadrotor is over

6x greater than a previous reactive controller based approach

[23], and over 2x greater than a naive deliberative approach

without introspection [14] as shown in Fig. 8.

It has hard to compare our results with other existing

research on autonomous outdoor flight [24–26]. The average

distance flown without intervention, average flight speed,

and density of obstacles in the environment are three

metrics that are crucial for a fair comparison of attempts

at autonomous outdoor flight. These works however either

report only a subset of these metrics, or none of them.

VI. CONCLUSION

This work presents both a comprehensive argument for

learning failure responses, and a framework which achieves

that goal. During our experiments, it became evident that

most perception failures were triggered due to improper

illumination in the scene. The effects which caused failures

ranged from over-exposure to strong-shadows. The use of

illumination invariant images [27] for monocular navigation

is thus an interesting research direction.

In this work, we used our domain knowledge to create

the set of four candidate maneuvers. Our methodolgy during
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training implicitly assumes that only one of these could

recover from a failure, which is incorrect. This is evident

from the fact that randomly selecting one out of four

maneuvers results in recovery > 25% of the time as shown

in Fig. 7. In future work, we hope to address the problem

of selecting the most likely to succeed maneuver in a more

intuitive way. Since only one maneuver can be executed per

failure, and only its reward can be observed, this problem

can be formulated more logically in a bandit setting [28],

rather than the supervised learning setting considered in this

paper. This would allow us to dynamically edit the set of

recovery maneuvers (add/delete) based on the estimates of

the mean rewards of maneuvers and the uncertainty around

these estimates.
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